STAGE: a spatiotemporal-knowledge enhanced multi-task generative adversarial network (GAN) for trajectory generation
文献类型:期刊论文
作者 | Cao, Zhongcai4,5; Liu, Kang4; Jin, Xin3,4; Ning, Li2; Yin, Ling4; Lu, Feng1,3 |
刊名 | INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE
![]() |
出版日期 | 2024-07-27 |
卷号 | N/A页码:28 |
关键词 | Trajectory generation generative adversarial network multi-task learning spatial consistency loss knowledge-guided GeoAI |
ISSN号 | 1365-8816 |
DOI | 10.1080/13658816.2024.2381146 |
英文摘要 | Individual trajectory data play a pivotal role in various application fields, such as urban planning, traffic control, and epidemic simulation. Despite the diverse means for data collection in current times, the real-world trajectory data in practical application remains severely limited due to concerns over personal privacy. In this study, we designed a Spatiotemporal-knowledge enhanced multi-TAsk GEnerative adversarial network (GAN), named STAGE, to generate synthetic trajectories that statistically resemble the real data without recycling personal information. In STAGE, we designed a multi-task generator with three stages of spatio-temporal generation tasks, i.e. activity-sequence generation task, township-level trajectory generation task, and neighborhood-level trajectory generation task, with the last one as the main task while the other two as auxiliary tasks. Meanwhile, we designed a spatial consistency loss in the adversarial training process to assess the spatial consistency of generated trajectories at different spatial scales. Experiment results show that compared to the baselines, trajectories generated by our method have closer data distributions to the real ones. We argued that the designs of spatiotemporal-knowledge enhanced generation tasks and training loss benefit the spatiotemporal generation processes, which help reproduce the temporal patterns of human daily activities and spatial distribution of human movements. |
WOS关键词 | ANOMALY DETECTION |
资助项目 | National Key Research and Development Program of China |
WOS研究方向 | Computer Science ; Geography ; Physical Geography ; Information Science & Library Science |
语种 | 英语 |
WOS记录号 | WOS:001279427600001 |
出版者 | TAYLOR & FRANCIS LTD |
资助机构 | National Key Research and Development Program of China |
源URL | [http://ir.igsnrr.ac.cn/handle/311030/207118] ![]() |
专题 | 资源与环境信息系统国家重点实验室_外文论文 |
通讯作者 | Liu, Kang |
作者单位 | 1.Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, State Key Lab Resources & Environm Informat Syst, Beijing, Peoples R China 2.Univ Elect Sci & Technol China, Shenzhen Inst Adv Study, Shenzhen, Peoples R China 3.Univ Chinese Acad Sci, Beijing, Peoples R China 4.Chinese Acad Sci, Shenzhen Inst Adv Technol, Shenzhen, Peoples R China 5.Southern Univ Sci & Technol, Shenzhen, Peoples R China |
推荐引用方式 GB/T 7714 | Cao, Zhongcai,Liu, Kang,Jin, Xin,et al. STAGE: a spatiotemporal-knowledge enhanced multi-task generative adversarial network (GAN) for trajectory generation[J]. INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE,2024,N/A:28. |
APA | Cao, Zhongcai,Liu, Kang,Jin, Xin,Ning, Li,Yin, Ling,&Lu, Feng.(2024).STAGE: a spatiotemporal-knowledge enhanced multi-task generative adversarial network (GAN) for trajectory generation.INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE,N/A,28. |
MLA | Cao, Zhongcai,et al."STAGE: a spatiotemporal-knowledge enhanced multi-task generative adversarial network (GAN) for trajectory generation".INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE N/A(2024):28. |
入库方式: OAI收割
来源:地理科学与资源研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。