中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Predicting Future Spatio-Temporal States Using a Robust Causal Graph Attention Model

文献类型:期刊论文

作者Wang, Peixiao3; Zhang, Hengcai3; Lu, Feng2,3
刊名SPATIAL DATA AND INTELLIGENCE, SPATIALDI 2024
出版日期2024-10-01
卷号14619页码:242-251
关键词Spatiotemporal prediction spatiotemporal data missing causal dilatation convolution graph attention network
DOI10.1007/978-981-97-2966-1_18
产权排序1
文献子类Proceedings Paper
英文摘要Spatiotemporal prediction is a research topic in urban planning and management. Most existing spatiotemporal prediction models currently face challenges. More specifically, most prediction models are sensitive to missing data, meaning most prediction models are only tested on spatiotemporal data assuming no missing data. Although missing data can be imputed, spatiotemporal prediction models with the capability of handling missing data are needed. In this study, we propose a novel missing-data-tolerant causal graph attention model called CGATM to address the above challenges. To enable the CGATM model to be tested on spatiotemporal data with missing data, we propose a novel missing data handling mechanism that automatically handles missing data according to the probability of data missing patterns. To improve the nonlinear fitting ability of the CGATMmodel, we propose a novel causal graph attention method that represents geospatial heterogeneity by adjacent nodes with different weights. In addition, we design the CGTAM model as an Imputer-Predictor architecture and define a novel loss function to optimize model parameters. The proposed model was validated on three real-world spatiotemporal datasets (traffic dataset, PM2.5 dataset, and temperature dataset). Experimental results showed that the proposed model has better prediction performance under four missing scenarios, and outperforms eight existing baselines regarding prediction accuracy.
WOS研究方向Computer Science ; Remote Sensing
WOS记录号WOS:001278296000018
源URL[http://ir.igsnrr.ac.cn/handle/311030/207901]  
专题资源与环境信息系统国家重点实验室_外文论文
通讯作者Zhang, Hengcai
作者单位1.Fujian Collaborat Innovat Ctr Big Data Applicat G, Fuzhou 350003, Peoples R China
2.Univ Chinese Acad Sci, Coll Resources & Environm, Beijing 100049, Peoples R China
3.Chinese Acad Sci, State Key Lab Resources & Environm Informat Syst, Inst Geog Sci & Nat Resources Res, Beijing 100101, Peoples R China
推荐引用方式
GB/T 7714
Wang, Peixiao,Zhang, Hengcai,Lu, Feng. Predicting Future Spatio-Temporal States Using a Robust Causal Graph Attention Model[J]. SPATIAL DATA AND INTELLIGENCE, SPATIALDI 2024,2024,14619:242-251.
APA Wang, Peixiao,Zhang, Hengcai,&Lu, Feng.(2024).Predicting Future Spatio-Temporal States Using a Robust Causal Graph Attention Model.SPATIAL DATA AND INTELLIGENCE, SPATIALDI 2024,14619,242-251.
MLA Wang, Peixiao,et al."Predicting Future Spatio-Temporal States Using a Robust Causal Graph Attention Model".SPATIAL DATA AND INTELLIGENCE, SPATIALDI 2024 14619(2024):242-251.

入库方式: OAI收割

来源:地理科学与资源研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。