中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Generating Daily High-Resolution Regional XCO2 by Deep Neural Network and Multi-Source Data

文献类型:期刊论文

作者Tian, Wenjie5; Zhang, Lili4,5; Yu, Tao5; Yao, Dong3; Zhang, Wenhao2; Wang, Chunmei5
刊名ATMOSPHERE
出版日期2024-08-01
卷号15期号:8页码:985
关键词DNN XCO2 China regional fine scale high resolution
DOI10.3390/atmos15080985
产权排序3
文献子类Article
英文摘要CO2 is one of the primary greenhouse gases impacting global climate change, making it crucial to understand the spatiotemporal variations of CO2. Currently, commonly used satellites serve as the primary means of CO2 observation, but they often suffer from striping issues and fail to achieve complete coverage. This paper proposes a method for constructing a comprehensive high-spatiotemporal-resolution XCO2 dataset based on multiple auxiliary data sources and satellite observations, utilizing multiple simple deep neural network (DNN) models. Global validation results against ground-based TCCON data demonstrate the excellent accuracy of the constructed XCO2 dataset (R is 0.94, RMSE is 0.98 ppm). Using this method, we analyze the spatiotemporal variations of CO2 in China and its surroundings (region: 0 degrees-60 degrees N, 70 degrees-140 degrees E) from 2019 to 2020. The gapless and fine-scale CO2 generation method enhances people's understanding of CO2 spatiotemporal variations, supporting carbon-related research.
WOS关键词INDUCED CHLOROPHYLL FLUORESCENCE ; CARBON ; RETRIEVAL ; CO2 ; EMISSIONS ; TCCON ; OCO-2
WOS研究方向Environmental Sciences & Ecology ; Meteorology & Atmospheric Sciences
WOS记录号WOS:001306896700001
源URL[http://ir.igsnrr.ac.cn/handle/311030/207996]  
专题资源与环境信息系统国家重点实验室_外文论文
通讯作者Zhang, Lili
作者单位1.North China Inst Aerosp Engn, Langfang 065000, Peoples R China
2.QiLu Aerosp Informat Res Inst, Jinan 250010, Peoples R China
3.Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, State Key Lab Resources & Environm Informat Syst, Beijing 100101, Peoples R China
4.Chinese Acad Sci, Aerosp Informat Res Inst, Beijing 100094, Peoples R China
5.Hainan Aerosp Informat Res Inst, Key Lab Earth Observat Hainan Prov, Sanya 572029, Peoples R China
推荐引用方式
GB/T 7714
Tian, Wenjie,Zhang, Lili,Yu, Tao,et al. Generating Daily High-Resolution Regional XCO2 by Deep Neural Network and Multi-Source Data[J]. ATMOSPHERE,2024,15(8):985.
APA Tian, Wenjie,Zhang, Lili,Yu, Tao,Yao, Dong,Zhang, Wenhao,&Wang, Chunmei.(2024).Generating Daily High-Resolution Regional XCO2 by Deep Neural Network and Multi-Source Data.ATMOSPHERE,15(8),985.
MLA Tian, Wenjie,et al."Generating Daily High-Resolution Regional XCO2 by Deep Neural Network and Multi-Source Data".ATMOSPHERE 15.8(2024):985.

入库方式: OAI收割

来源:地理科学与资源研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。