Multiple serial correlations in global air temperature anomaly time series
文献类型:期刊论文
作者 | Gao, Meng2![]() |
刊名 | PLOS ONE
![]() |
出版日期 | 2024-07-09 |
卷号 | 19期号:7页码:20 |
ISSN号 | 1932-6203 |
DOI | 10.1371/journal.pone.0306694 |
通讯作者 | Gao, Meng(gaomeng03@hotmail.com) |
英文摘要 | Serial correlations within temperature time series serve as indicators of the temporal consistency of climate events. This study delves into the serial correlations embedded in global surface air temperature (SAT) data. Initially, we preprocess the SAT time series to eradicate seasonal patterns and linear trends, resulting in the SAT anomaly time series, which encapsulates the inherent variability of Earth's climate system. Employing diverse statistical techniques, we identify three distinct types of serial correlations: short-term, long-term, and nonlinear. To identify short-term correlations, we utilize the first-order autoregressive model, AR(1), revealing a global pattern that can be partially attributed to atmospheric Rossby waves in extratropical regions and the Eastern Pacific warm pool. For long-term correlations, we adopt the standard detrended fluctuation analysis, finding that the global pattern aligns with long-term climate variability, such as the El Ni & ntilde;o-Southern Oscillation (ENSO) over the Eastern Pacific. Furthermore, we apply the horizontal visibility graph (HVG) algorithm to transform the SAT anomaly time series into complex networks. The topological parameters of these networks aptly capture the long-term correlations present in the data. Additionally, we introduce a novel topological parameter, Delta sigma, to detect nonlinear correlations. The statistical significance of this parameter is rigorously tested using the Monte Carlo method, simulating fractional Brownian motion and fractional Gaussian noise processes with a predefined DFA exponent to estimate confidence intervals. In conclusion, serial correlations are universal in global SAT time series and the presence of these serial correlations should be considered carefully in climate sciences. |
WOS关键词 | LONG-RANGE DEPENDENCE ; TERM-MEMORY ; SEASONALITY |
WOS研究方向 | Science & Technology - Other Topics |
语种 | 英语 |
WOS记录号 | WOS:001270730100001 |
资助机构 | Key Program of Shandong Natural Science Foundation ; National Natural Science Foundation of China |
源URL | [http://ir.yic.ac.cn/handle/133337/35666] ![]() |
专题 | 烟台海岸带研究所_中科院海岸带环境过程与生态修复重点实验室 烟台海岸带研究所_海岸带信息集成与综合管理实验室 |
通讯作者 | Gao, Meng |
作者单位 | 1.Chinese Acad Sci, Yantai Inst Coastal Zone Res, Yantai, Peoples R China 2.Yantai Univ, Sch Math & Informat Sci, Yantai, Peoples R China |
推荐引用方式 GB/T 7714 | Gao, Meng,Fang, Xiaoyu,Ge, Ruijun,et al. Multiple serial correlations in global air temperature anomaly time series[J]. PLOS ONE,2024,19(7):20. |
APA | Gao, Meng,Fang, Xiaoyu,Ge, Ruijun,Fan, You-ping,&Wang, Yueqi.(2024).Multiple serial correlations in global air temperature anomaly time series.PLOS ONE,19(7),20. |
MLA | Gao, Meng,et al."Multiple serial correlations in global air temperature anomaly time series".PLOS ONE 19.7(2024):20. |
入库方式: OAI收割
来源:烟台海岸带研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。