中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
AI-driven antibody design with generative diffusion models: current insights and future directions

文献类型:期刊论文

作者He, Xin-heng3,4,5; Li, Jun-rui4,5; Xu, James2; Shan, Hong4,5; Shen, Shi-yi3,4,5; Gao, Si-han1; Xu, H. Eric2,3,4,5
刊名ACTA PHARMACOLOGICA SINICA
出版日期2024-09-30
页码10
关键词antibodies generative model diffusion de novo antibody design CDR optimization model evaluation
ISSN号1671-4083
DOI10.1038/s41401-024-01380-y
通讯作者Xu, H. Eric(eric.xu@simm.ac.cn)
英文摘要Therapeutic antibodies are at the forefront of biotherapeutics, valued for their high target specificity and binding affinity. Despite their potential, optimizing antibodies for superior efficacy presents significant challenges in both monetary and time costs. Recent strides in computational and artificial intelligence (AI), especially generative diffusion models, have begun to address these challenges, offering novel approaches for antibody design. This review delves into specific diffusion-based generative methodologies tailored for antibody design tasks, de novo antibody design, and optimization of complementarity-determining region (CDR) loops, along with their evaluation metrics. We aim to provide an exhaustive overview of this burgeoning field, making it an essential resource for leveraging diffusion-based generative models in antibody design endeavors.
WOS关键词SIMILARITY
资助项目Lingang Laboratory[LG-GG-202204-01] ; National Natural Science Foundation[82121005] ; National Natural Science Foundation[32130022] ; CAS Strategic Priority Research Program[XDB37030103] ; Shanghai Municipal Science and Technology Major Project[2019SHZDZX02]
WOS研究方向Chemistry ; Pharmacology & Pharmacy
语种英语
WOS记录号WOS:001325456200001
出版者NATURE PUBL GROUP
源URL[http://119.78.100.183/handle/2S10ELR8/313624]  
专题新药研究国家重点实验室
通讯作者Xu, H. Eric
作者单位1.Fudan Univ, Sch Pharm, Shanghai 201203, Peoples R China
2.Cascade Pharm, Shanghai 201318, Peoples R China
3.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
4.Chinese Acad Sci, Shanghai Inst Mat Med, CAS Key Lab Receptor Res, Shanghai 201203, Peoples R China
5.Chinese Acad Sci, State Key Lab Drug Res, Shanghai Inst Mat Med, Shanghai 201203, Peoples R China
推荐引用方式
GB/T 7714
He, Xin-heng,Li, Jun-rui,Xu, James,et al. AI-driven antibody design with generative diffusion models: current insights and future directions[J]. ACTA PHARMACOLOGICA SINICA,2024:10.
APA He, Xin-heng.,Li, Jun-rui.,Xu, James.,Shan, Hong.,Shen, Shi-yi.,...&Xu, H. Eric.(2024).AI-driven antibody design with generative diffusion models: current insights and future directions.ACTA PHARMACOLOGICA SINICA,10.
MLA He, Xin-heng,et al."AI-driven antibody design with generative diffusion models: current insights and future directions".ACTA PHARMACOLOGICA SINICA (2024):10.

入库方式: OAI收割

来源:上海药物研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。