Mesiri: Mephisto Early Supernovae Ia Rapid Identifier
文献类型:期刊论文
作者 | Zhang, Lun-Wei2; Wang ZY(王振宇)1![]() |
刊名 | RESEARCH IN ASTRONOMY AND ASTROPHYSICS
![]() |
出版日期 | 2024-11-01 |
卷号 | 24期号:11 |
关键词 | techniques: photometric telescopes surveys |
ISSN号 | 1674-4527 |
DOI | 10.1088/1674-4527/ad7e68 |
产权排序 | 第2完成单位 |
文献子类 | Article |
英文摘要 | The early time observations of Type Ia supernovae (SNe Ia) play a crucial role in investigating and resolving longstanding questions about progenitor stars and the explosion mechanisms of these events. Colors of supernovae (SNe) in the initial days after the explosion can help differentiate between different types of SNe. However, the use of true color information to identify SNe Ia at the early-time explosion is still in its infancy. The Multi-channel Photometric Survey Telescope (Mephisto) is a photometric survey telescope equipped with three CCD cameras, capable of simultaneously imaging the same patch of sky in three bands (u, g, i or v, r, z), yielding real-time colors of astronomical objects. In this paper, we introduce a new time-series classification tool named Mephisto Early Supernovae Ia Rapid Identifier (Mesiri), which, for the first time, utilizes real-time color information to distinguish early-time SNe Ia from core-collapse supernovae. Mesiri is based on the deep learning approach and can achieve an accuracy of 96.75% +/- 0.79%, and AUC of 98.87% +/- 0.53% in case of single epoch random observation before the peak brightness. These values reach towards perfectness if additional data points on several night observations are considered. The classification with real-time color significantly outperforms that with pseudo-color, especially at the early time, i.e., with only a few points of observations. The BiLSTM architecture shows the best performance compared to others that have been tested in this work. |
学科主题 | 天文学 ; 恒星与银河系 |
URL标识 | 查看原文 |
出版地 | 20A DATUN RD, CHAOYANG, BEIJING, 100101, PEOPLES R CHINA |
WOS关键词 | ZTF EARLY OBSERVATIONS ; SURVEY TELESCOPE ; NEURAL-NETWORKS ; LIGHT-CURVE ; K-CORRECTIONS ; SN 2011FE ; TIME ; CLASSIFICATION ; EXCESS ; EXPLOSION |
资助项目 | Yunnan University Development Plan for World-Class University; Yunnan University Development Plan for World-Class Astronomy Discipline; Science & Technology Champion Project[202005AB160002]; Yunnan Revitalization Talent Support Program[202105AE160021]; Yunnan Revitalization Talent Support Program[202305AT350002]; Yunnan Fundamental Research Projects[202301AU070006] |
WOS研究方向 | Astronomy & Astrophysics |
语种 | 英语 |
WOS记录号 | WOS:001342254200001 |
出版者 | NATL ASTRONOMICAL OBSERVATORIES, CHIN ACAD SCIENCES |
资助机构 | Yunnan University Development Plan for World-Class University ; Yunnan University Development Plan for World-Class Astronomy Discipline ; Science & Technology Champion Project[202005AB160002] ; Yunnan Revitalization Talent Support Program[202105AE160021, 202305AT350002] ; Yunnan Fundamental Research Projects[202301AU070006] |
版本 | 出版稿 |
源URL | [http://ir.ynao.ac.cn/handle/114a53/27661] ![]() |
专题 | 云南天文台_丽江天文观测站(南方基地) |
作者单位 | 1.Yunnan Observatories, Chinese Academy of Sciences, Kunming 650216, China 2.South-Western Institute for Astronomy Research, Yunnan University, Kunming, Yunnan 650500, China; xer@ynu.edu.cn, x.liu@ynu.edu.cn; |
推荐引用方式 GB/T 7714 | Zhang, Lun-Wei,Wang ZY,Liu, De-Zi,et al. Mesiri: Mephisto Early Supernovae Ia Rapid Identifier[J]. RESEARCH IN ASTRONOMY AND ASTROPHYSICS,2024,24(11). |
APA | Zhang, Lun-Wei.,王振宇.,Liu, De-Zi.,Fang, Yuan.,Kumar, Brajesh.,...&Liu, Xiao-Wei.(2024).Mesiri: Mephisto Early Supernovae Ia Rapid Identifier.RESEARCH IN ASTRONOMY AND ASTROPHYSICS,24(11). |
MLA | Zhang, Lun-Wei,et al."Mesiri: Mephisto Early Supernovae Ia Rapid Identifier".RESEARCH IN ASTRONOMY AND ASTROPHYSICS 24.11(2024). |
入库方式: OAI收割
来源:云南天文台
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。