中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Efficient and High-Fidelity Mobility Prediction for Unmanned Ground Vehicles Based on Gaussian Sampled Terrain and Enhanced Neural Network

文献类型:期刊论文

作者Chen Hua; Runxin Niu; Chunmao Jiang; Biao Yu; Hui Zhu; Bichun Li
刊名IEEE Robotics and Automation Letters
出版日期2023-11-01
语种英语
源URL[http://ir.hfcas.ac.cn:8080/handle/334002/134483]  
专题合肥物质科学研究院_中科院合肥智能机械研究所
通讯作者Biao Yu
作者单位中国科学院合肥物质科学研究院
推荐引用方式
GB/T 7714
Chen Hua,Runxin Niu,Chunmao Jiang,et al. Efficient and High-Fidelity Mobility Prediction for Unmanned Ground Vehicles Based on Gaussian Sampled Terrain and Enhanced Neural Network[J]. IEEE Robotics and Automation Letters,2023.
APA Chen Hua,Runxin Niu,Chunmao Jiang,Biao Yu,Hui Zhu,&Bichun Li.(2023).Efficient and High-Fidelity Mobility Prediction for Unmanned Ground Vehicles Based on Gaussian Sampled Terrain and Enhanced Neural Network.IEEE Robotics and Automation Letters.
MLA Chen Hua,et al."Efficient and High-Fidelity Mobility Prediction for Unmanned Ground Vehicles Based on Gaussian Sampled Terrain and Enhanced Neural Network".IEEE Robotics and Automation Letters (2023).

入库方式: OAI收割

来源:合肥物质科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。