中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Enhanced methane production by granular activated carbon: A review

文献类型:期刊论文

作者Xiao, Leilei1; Liu, Jian2; Kumar, P. Senthil4; Zhou, Meng3; Yu, Jiafeng2; Lichtfouse, Eric5
刊名FUEL
出版日期2022-07-15
卷号320页码:9
关键词Anaerobic digestion Microbiome Methane production Granular activated carbon Conductive material Direct interspecies electron transfer Wastewater
ISSN号0016-2361
DOI10.1016/j.fuel.2022.123903
通讯作者Xiao, Leilei(llxiao@yic.ac.cn)
英文摘要Biomethane production by anaerobic digestion is an efficient technology to treat organic waste and produce clean energy. A growing number of studies has attempted to use carbon-based materials to enhance methane production performance. Granular activated carbon (GAC) is commonly used due to its low price and high efficiency. Moreover, the high conductivity of GAC favors direct interspecies electron transfer (DIET) coupled with CO2 reduction to accelerate electromethanogenesis. GAC has also other properties such as porosity, which may influence microbial methanogenesis. But the comprehensive contributions to microbiome function were hardly summarized. Herein, we review the effects of GAC on anaerobic carbon mineralization, with focus on conductivity, adhesion, adsorption, pH buffering, and redox mediation. The findings are also applicable to natural ecosystems, such as soils and sediments. We also discuss modification of GAC by nanomaterials to enhance anaerobic performance. We suggest practical GAC applications in anaerobic digestion and energy conservation.
WOS关键词INTERSPECIES ELECTRON-TRANSFER ; ANAEROBIC-DIGESTION ; WASTE-WATER ; CONDUCTIVE MATERIALS ; SLUDGE-DIGESTION ; FOOD WASTE ; GENERATION ; REMOVAL ; COMMUNITY ; MAGNETITE
WOS研究方向Energy & Fuels ; Engineering
语种英语
WOS记录号WOS:000783210100002
资助机构National Natural Science Foundation of China ; Youth Innovation Promotion As-sociation, CAS
源URL[http://ir.yic.ac.cn/handle/133337/37685]  
专题烟台海岸带研究所_中科院海岸带环境过程与生态修复重点实验室
烟台海岸带研究所_近岸生态与环境实验室
通讯作者Xiao, Leilei
作者单位1.Yantai Inst Coastal Zone Res, Chinese Acad Sci, CAS Key Lab Coastal Environm Proc & Ecol Rem, Yantai 264003, Peoples R China
2.Dezhou Univ, Inst Biophys, Shandong Key Lab Biophys, Dezhou 253023, Peoples R China
3.Northeast Inst Geog & Agroecol, Chinese Acad Sci, Key Lab Mollisols Agroecol, Harbin 150081, Peoples R China
4.Sri Sivasubramaniya Nadar Coll Engn, Dept Chem Engn, Chennai 603110, Tamil Nadu, India
5.Aix Marseille Univ, Coll France, CNRS, IRD,INRA,CEREGE, Ave Louis Philibert, F-13100 Aix En Provence, France
推荐引用方式
GB/T 7714
Xiao, Leilei,Liu, Jian,Kumar, P. Senthil,et al. Enhanced methane production by granular activated carbon: A review[J]. FUEL,2022,320:9.
APA Xiao, Leilei,Liu, Jian,Kumar, P. Senthil,Zhou, Meng,Yu, Jiafeng,&Lichtfouse, Eric.(2022).Enhanced methane production by granular activated carbon: A review.FUEL,320,9.
MLA Xiao, Leilei,et al."Enhanced methane production by granular activated carbon: A review".FUEL 320(2022):9.

入库方式: OAI收割

来源:烟台海岸带研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。