Dual-frequency impedance assays for intracellular components in microalgal cells
文献类型:期刊论文
作者 | Tang, Tao1; Liu, Xun1; Yuan, Yapeng2; Kiya, Ryota1; Shen, Yigang2; Zhang, Tianlong1,3; Suzuki, Kengo4; Tanaka, Yo2; Li, Ming3; Hosokawa, Yoichiroh1 |
刊名 | Lab on a Chip
![]() |
出版日期 | 2021-12 |
卷号 | 22页码:550 |
通讯作者 | Yalikun, Yaxiaer |
目次 | 否 |
英文摘要 | Intracellular components (including organelles and biomolecules) at the submicron level are typically analyzed in situ by special preparation or expensive setups. Here, a label-free and cost-effective approach of screening microalgal single-cells at a subcellular resolution is available based on impedance cytometry. To the best of our knowledge, it is the first time that the relationships between impedance signals and submicron intracellular organelles and biomolecules are shown. Experiments were performed on Euglena gracilis (E. gracilis) cells incubated under different incubation conditions (i.e., aerobic and anaerobic) and 15 μm polystyrene beads (reference) at two distinct stimulation frequencies (i.e., 500 kHz and 6 MHz). Based on the impedance detection of tens of thousands of samples at a throughput of about 900 cells per second, three metrics were used to track the changes in biophysical properties of samples. As a result, the electrical diameters of cells showed a clear shrinkage in cell volume and intracellular components, as observed under a microscope. The morphology metric of impedance pulses (i.e., tilt index) successfully characterized the changes in cell shape and intracellular composition distribution. Besides, the electrical opacity showed a stable ratio of the intracellular components to cell volume under the cellular self-regulation. Additionally, simulations were used to support these findings and to elucidate how submicron intracellular components and cell morphology affect impedance signals, providing a basis for future improvements. This work opens up a label-free and high-throughput way to analyze single-cell intracellular components by impedance cytometry. |
语种 | 英语 |
版本 | 出版稿 |
源URL | [http://ir.idsse.ac.cn/handle/183446/11652] ![]() |
专题 | 深海工程技术部_深海资源开发研究室 |
通讯作者 | Yalikun, Yaxiaer |
作者单位 | 1.Division of Materials Science, Nara Institute of Science and Technology 2.Center for Biosystems Dynamics Research (BDR), RIKEN 3.School of Engineering, Macquarie University 4.Euglena Co. Ltd. |
推荐引用方式 GB/T 7714 | Tang, Tao,Liu, Xun,Yuan, Yapeng,et al. Dual-frequency impedance assays for intracellular components in microalgal cells[J]. Lab on a Chip,2021,22:550. |
APA | Tang, Tao.,Liu, Xun.,Yuan, Yapeng.,Kiya, Ryota.,Shen, Yigang.,...&Yalikun, Yaxiaer.(2021).Dual-frequency impedance assays for intracellular components in microalgal cells.Lab on a Chip,22,550. |
MLA | Tang, Tao,et al."Dual-frequency impedance assays for intracellular components in microalgal cells".Lab on a Chip 22(2021):550. |
入库方式: OAI收割
来源:深海科学与工程研究所
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。