Interface capturing schemes based on sigmoid functions
文献类型:期刊论文
作者 | Zhang K(张珂); Shen YQ(申义庆)![]() |
刊名 | COMPUTERS & FLUIDS
![]() |
出版日期 | 2024-08 |
卷号 | 280页码:106352 |
关键词 | THINC Sigmoid functions Non-polynomial reconstructions SFINC Gudermannian function |
ISSN号 | 0045-7930 |
DOI | 10.1016/j.compfluid.2024.106352 |
英文摘要 | The non-polynomial THINC (tangent of hyperbola for interface capturing) scheme has been reported to show both numerical simplicity and high fidelity for resolving contact interfaces. In this paper, two types of smooth sigmoid functions are employed to construct the non-polynomial reconstructions for capturing interfaces (similarly, called SFINC schemes, sigmoid functions for interface capturing). One type is that the exact jump location (a parameter introduced in the reconstruction) can be analytically calculated, and another type cannot. The algebraic function and the Gudermannian function belong to the first and the second types, respectively, and are investigated in this paper. An approximate method for calculating the jump location of the Gudermannian function is proposed. The method avoids the iteration process of determining the jump location, and hence is efficient and practical in applications. The numerical validations and comparisons of SFINC schemes are presented to show their performance for simulating complex compressible flow fields. |
分类号 | 二类 |
WOS研究方向 | Computer Science ; Mechanics |
语种 | 英语 |
WOS记录号 | WOS:001270676300001 |
资助机构 | National Natural Science Foun-dation of China {12172364, 11872067, 91852203] |
其他责任者 | Shen YQ |
源URL | [http://dspace.imech.ac.cn/handle/311007/97188] ![]() |
专题 | 力学研究所_高温气体动力学国家重点实验室 |
作者单位 | Univ Chinese Acad Sci, Sch Engn Sci, Beijing 100049, Peoples R China |
推荐引用方式 GB/T 7714 | Zhang K,Shen YQ. Interface capturing schemes based on sigmoid functions[J]. COMPUTERS & FLUIDS,2024,280:106352. |
APA | 张珂,&申义庆.(2024).Interface capturing schemes based on sigmoid functions.COMPUTERS & FLUIDS,280,106352. |
MLA | 张珂,et al."Interface capturing schemes based on sigmoid functions".COMPUTERS & FLUIDS 280(2024):106352. |
入库方式: OAI收割
来源:力学研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。