GAS: General-Purpose In-Memory-Computing Accelerator for Sparse Matrix Multiplication
文献类型:期刊论文
作者 | Zhang, Xiaoyu1,2; Li, Zerun1,2; Liu, Rui2,3; Chen, Xiaoming1,2; Han, Yinhe1,2 |
刊名 | IEEE TRANSACTIONS ON COMPUTERS
![]() |
出版日期 | 2024-06-01 |
卷号 | 73期号:6页码:1427-1441 |
关键词 | Sparse matrices FeFETs Computer architecture Arrays Nonvolatile memory Microprocessors Vectors Sparse matrix multiplication in-memory computing SpMV SpMSpV SpMM SpMSpM |
ISSN号 | 0018-9340 |
DOI | 10.1109/TC.2024.3371790 |
英文摘要 | Sparse matrix multiplication is widely used in various practical applications. Different accelerators have been proposed to speed up sparse matrix-dense vector multiplication (SpMV), sparse matrix-sparse vector multiplication (SpMSpV), sparse matrix-dense matrix multiplication (SpMM), and sparse matrix-sparse matrix multiplication (SpMSpM). The performance of traditional sparse matrix multiplication accelerators is typically bounded by memory access due to the poor data locality and irregular memory access. In-memory computing (IMC) is a promising technique to alleviate the memory bottleneck. Previous IMC studies are mostly focused on accelerating a single sparse matrix multiplication function. In this paper, we propose GAS, a general-purpose IMC accelerator for sparse matrix multiplication. GAS integrates non-volatile memory based content-addressable memory (CAM) arrays and multiply-add computation (MAC) arrays to support sparse matrices represented in the double-precision floating-point format. Using a unified outer product based multiplication methodology, GAS supports the acceleration of SpMV, SpMSpv, SpMM, and SpMSpM. We further propose four optimization techniques to speed up the computation of GAS. GAS achieves significant speedups and energy savings over central processing unit (CPU) and graphics processing unit (GPU) implementations. Compared with state-of-the-art traditional and IMC-based accelerators, GAS not only supports more functions, but also achieves higher performance and energy efficiency. |
资助项目 | National Key Research and Development Program of China |
WOS研究方向 | Computer Science ; Engineering |
语种 | 英语 |
WOS记录号 | WOS:001218445400008 |
出版者 | IEEE COMPUTER SOC |
源URL | [http://119.78.100.204/handle/2XEOYT63/38970] ![]() |
专题 | 中国科学院计算技术研究所期刊论文_英文 |
通讯作者 | Chen, Xiaoming |
作者单位 | 1.Univ Chinese Acad Sci, Beijing 100190, Peoples R China 2.Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China 3.Xiangtan Univ, Sch Mat Sci & Engn, Xiangtan 411105, Hunan, Peoples R China |
推荐引用方式 GB/T 7714 | Zhang, Xiaoyu,Li, Zerun,Liu, Rui,et al. GAS: General-Purpose In-Memory-Computing Accelerator for Sparse Matrix Multiplication[J]. IEEE TRANSACTIONS ON COMPUTERS,2024,73(6):1427-1441. |
APA | Zhang, Xiaoyu,Li, Zerun,Liu, Rui,Chen, Xiaoming,&Han, Yinhe.(2024).GAS: General-Purpose In-Memory-Computing Accelerator for Sparse Matrix Multiplication.IEEE TRANSACTIONS ON COMPUTERS,73(6),1427-1441. |
MLA | Zhang, Xiaoyu,et al."GAS: General-Purpose In-Memory-Computing Accelerator for Sparse Matrix Multiplication".IEEE TRANSACTIONS ON COMPUTERS 73.6(2024):1427-1441. |
入库方式: OAI收割
来源:计算技术研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。