中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Deep Reinforcement Learning for RIS-Aided Secure Mobile Edge Computing in Industrial Internet of Things

文献类型:期刊论文

作者Xu, Jianpeng1; Xu, Aoshuo1; Chen, Liangyu2; Chen, Yali3; Liang, Xiaolin1; Ai, Bo4,5,6,7
刊名IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS
出版日期2024-02-01
卷号20期号:2页码:2455-2464
关键词Industrial Internet of Things Resource management Task analysis Wireless communication Power control Energy consumption Mathematical models Deep reinforcement learning (DRL) industrial Internet of things (IIoT) mobile edge computing (MEC) reconfigurable intelligent surface (RIS) secure offloading
ISSN号1551-3203
DOI10.1109/TII.2023.3292968
英文摘要Mobile edge computing (MEC) has been regarded as a promising paradigm to support the compute-intensive and delay-sensitive industrial Internet of things (IIoT) applications. However, the nature of broadcasting in wireless communications may cause that the task offloading security is easy to be threatened from eavesdroppers. Aiming at improving the task offloading security, this article studies the benefit of deploying the emerging reconfigurable intelligent surface (RIS) in MEC-enabled IIoT networks with eavesdroppers, and forms the RIS-aided secure MEC system with time-division multiple access. In addition, we formulate a joint RIS phase shift, power control, local computation rate, and time-slot allocation optimization problem to maximize the weighted sum secrecy computation efficiency (WSSCE) among IIoT devices. To address this intractable problem, we propose a deep reinforcement learning (DRL)-based algorithm, where a deep deterministic policy gradient (DDPG) agent is adopted. Numerical results demonstrate that 1) deploying the RIS can improve the WSSCE performance; 2) the proposed DDPG-based algorithm can obtain higher WSSCE than other baseline methods.
资助项目High-Level Talents Research Start-Up Project of Hebei University
WOS研究方向Automation & Control Systems ; Computer Science ; Engineering
语种英语
WOS记录号WOS:001171888600173
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
源URL[http://119.78.100.204/handle/2XEOYT63/39012]  
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Xu, Jianpeng; Ai, Bo
作者单位1.Hebei Univ, Coll Elect & Informat Engn, Baoding 071002, Peoples R China
2.Huawei Technol, Beijing 100095, Peoples R China
3.Chinese Acad Sci, Inst Comp Technol, Beijing 100045, Peoples R China
4.Beijing Jiaotong Univ, Sch Elect & Informat Engn, State Key Lab Rail Traff Control & Safety, Beijing 100044, Peoples R China
5.Beijing Jiaotong Univ, Frontiers Sci Ctr Smart High Speed Railway Syst, Beijing 100044, Peoples R China
6.Peng Cheng Lab, Res Ctr Networks & Commun, Shenzhen 518055, Peoples R China
7.Zhengzhou Univ, Henan Joint Int Res Lab Intelligent Networking & D, Zhengzhou, Peoples R China
推荐引用方式
GB/T 7714
Xu, Jianpeng,Xu, Aoshuo,Chen, Liangyu,et al. Deep Reinforcement Learning for RIS-Aided Secure Mobile Edge Computing in Industrial Internet of Things[J]. IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS,2024,20(2):2455-2464.
APA Xu, Jianpeng,Xu, Aoshuo,Chen, Liangyu,Chen, Yali,Liang, Xiaolin,&Ai, Bo.(2024).Deep Reinforcement Learning for RIS-Aided Secure Mobile Edge Computing in Industrial Internet of Things.IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS,20(2),2455-2464.
MLA Xu, Jianpeng,et al."Deep Reinforcement Learning for RIS-Aided Secure Mobile Edge Computing in Industrial Internet of Things".IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS 20.2(2024):2455-2464.

入库方式: OAI收割

来源:计算技术研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。