中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
MGSFformer: A Multi-Granularity Spatiotemporal Fusion Transformer for air quality prediction

文献类型:期刊论文

作者Yu, Chengqing1,2; Wang, Fei1,2; Wang, Yilun3; Shao, Zezhi1,2; Sun, Tao1; Yao, Di1; Xu, Yongjun1,2
刊名INFORMATION FUSION
出版日期2025
卷号113页码:15
关键词Air quality prediction Multi-Granularity Spatiotemporal Fusion Transformer Spatiotemporal correlation Multi-source information fusion
ISSN号1566-2535
DOI10.1016/j.inffus.2024.102607
英文摘要Air quality spatiotemporal prediction can provide technical support for environmental governance and sustainable city development. As a classic multi-source spatiotemporal data, effective multi-source information fusion is key to achieving accurate air quality predictions. However, due to not fully fusing two pieces of information, classical deep learning models struggle to achieve satisfactory prediction results: (1) Multi- granularity: each air monitoring station collects air quality data at different sampling intervals, which show distinct time series patterns. (2) Spatiotemporal correlation: due to human activities and atmospheric diffusion, there exist correlations between air quality data from different air monitoring stations, necessitating the consideration of other air monitoring stations' influences when modeling each air quality time series. In this study, to achieve satisfactory prediction results, we propose the Multi-Granularity Spatiotemporal Fusion Transformer, comprised of the residual de-redundant block, spatiotemporal attention block, and dynamic fusion block. Specifically, the residual de-redundant block eliminates information redundancy between data with different granularities and prevents the model from being misled by redundant information. The spatiotemporal attention block captures the spatiotemporal correlation of air quality data and facilitates prediction modeling. The dynamic fusion block evaluates the importance of data with different granularities and integrates the prediction results. Experimental results demonstrate that the proposed model surpasses 11 baselines by 5% in performance on three real-world datasets.
资助项目NSFC[62206266] ; NSFC[62372430] ; Youth Innovation Promotion Association CAS[2023112]
WOS研究方向Computer Science
语种英语
WOS记录号WOS:001288156200001
出版者ELSEVIER
源URL[http://119.78.100.204/handle/2XEOYT63/39669]  
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Wang, Fei; Xu, Yongjun
作者单位1.Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China
2.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
3.China North Ind Grp Corp, Inst Nav & Control Technol, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Yu, Chengqing,Wang, Fei,Wang, Yilun,et al. MGSFformer: A Multi-Granularity Spatiotemporal Fusion Transformer for air quality prediction[J]. INFORMATION FUSION,2025,113:15.
APA Yu, Chengqing.,Wang, Fei.,Wang, Yilun.,Shao, Zezhi.,Sun, Tao.,...&Xu, Yongjun.(2025).MGSFformer: A Multi-Granularity Spatiotemporal Fusion Transformer for air quality prediction.INFORMATION FUSION,113,15.
MLA Yu, Chengqing,et al."MGSFformer: A Multi-Granularity Spatiotemporal Fusion Transformer for air quality prediction".INFORMATION FUSION 113(2025):15.

入库方式: OAI收割

来源:计算技术研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。