中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Predicting Vessel Trajectories Using ASTGCN with StemGNN-Derived Correlation Matrix

文献类型:期刊论文

作者Zhang, Ran1; Chen, Xiaohui1; Ye, Lin1; Yu, Wentao1,2; Zhang, Bing1; Liu, Junnan3
刊名APPLIED SCIENCES-BASEL
出版日期2024-05-01
卷号14期号:10页码:20
关键词ais trajectory prediction attention mechanism spatio-temporal graph convolution
DOI10.3390/app14104104
英文摘要This study proposes a vessel position prediction method using attention spatiotemporal graph convolutional networks, which addresses the issue of low prediction accuracy due to less consideration of inter-feature dependencies in current vessel trajectory prediction methods. First, the method cleans the vessel trajectory data and uses the Time-ratio trajectory compression algorithm to compress the trajectory data, avoiding data redundancy and providing feature points for vessel trajectories. Second, the Spectral Temporal Graph Neural Network (StemGNN) extracts the correlation matrix that describes the relationship between multiple variables as a priori matrix input to the prediction model. Then the vessel trajectory prediction model is constructed, and the attention mechanism is added to the spatial and temporal dimensions of the trajectory data based on the spatio-temporal graph convolutional network at the same time as the above operations are performed on different time scales. Finally, the features extracted from different time scales are fused through the full connectivity layer to predict the future trajectories. Experimental results show that this method achieves higher accuracy and more stable prediction results in trajectory prediction. The attention-based spatio-temporal graph convolutional networks effectively capture the spatio-temporal correlations of the main features in vessel trajectories, and the spatio-temporal attention mechanism and graph convolution have certain interpretability for the prediction results.
资助项目National Natural Science Foundation of China
WOS研究方向Chemistry ; Engineering ; Materials Science ; Physics
语种英语
WOS记录号WOS:001232735100001
出版者MDPI
源URL[http://119.78.100.204/handle/2XEOYT63/40060]  
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Chen, Xiaohui
作者单位1.Informat Engn Univ, Inst Data & Target Engn, Zhengzhou 450001, Peoples R China
2.Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China
3.Zhengzhou Univ, Inst Geosci & Technol, Zhengzhou 450001, Peoples R China
推荐引用方式
GB/T 7714
Zhang, Ran,Chen, Xiaohui,Ye, Lin,et al. Predicting Vessel Trajectories Using ASTGCN with StemGNN-Derived Correlation Matrix[J]. APPLIED SCIENCES-BASEL,2024,14(10):20.
APA Zhang, Ran,Chen, Xiaohui,Ye, Lin,Yu, Wentao,Zhang, Bing,&Liu, Junnan.(2024).Predicting Vessel Trajectories Using ASTGCN with StemGNN-Derived Correlation Matrix.APPLIED SCIENCES-BASEL,14(10),20.
MLA Zhang, Ran,et al."Predicting Vessel Trajectories Using ASTGCN with StemGNN-Derived Correlation Matrix".APPLIED SCIENCES-BASEL 14.10(2024):20.

入库方式: OAI收割

来源:计算技术研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。