中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Travel-mode inference based on GPS-trajectory data through multi-scale mixed attention mechanism

文献类型:期刊论文

作者Pei, Xiaohui1,2; Yang, Xianjun2; Wang, Tao2; Ding, Zenghui2; Xu, Yang2; Jia, Lin2; Sun, Yining2
刊名HELIYON
出版日期2024-08-15
卷号10
关键词Travel-mode inference GPS-trajectory data Multi-scale convolution Attention mechanism
DOI10.1016/j.heliyon.2024.e35572
通讯作者Yang, Xianjun(xjyang@iim.ac.cn)
英文摘要Identifying travel modes is essential for modern urban transportation planning and management. Recent advancements in data collection, especially those involving Global Positioning System (GPS) technology, offer promising opportunities for rapidly and accurately inferring users' travel modes. This study presents an innovative method for inferring travel modes from GPS trajectory data. The method utilizes multi-scale convolutional techniques to capture and analyze both temporal and spatial information of the data, thereby revealing the underlying spatiotemporal relationships inherent in user movement and behavior patterns. In addition, an attention mechanism is integrated into the model to enable autonomous learning. This mechanism enhances the model's capacity to identify and emphasize key information across different time periods and spatial locations, thus improving the accuracy of travel mode inference. Evaluation on the open-source GPS trajectory dataset, GeoLife, demonstrates that the proposed method attained an accuracy of 83.3%. This result highlights the effectiveness of the method, demonstrating that the model can more accurately understand and predict user travel modes through the integration of multi-scale convolutional technologies and attention mechanisms.
WOS关键词TRANSPORTATION MODES
资助项目Anhui Provincial Major Science and Technology Project[202103a07020004] ; Anhui Provincial Major Science and Technology Project[202303a07020006-4] ; Anhui Provincial Major Science and Technology Project[202304a05020071] ; Anhui Province Natural Science Foundation[202204295107020004] ; National Natural Science Foundation of China[62133004]
WOS研究方向Science & Technology - Other Topics
语种英语
WOS记录号WOS:001291368400001
出版者CELL PRESS
资助机构Anhui Provincial Major Science and Technology Project ; Anhui Province Natural Science Foundation ; National Natural Science Foundation of China
源URL[http://ir.hfcas.ac.cn:8080/handle/334002/136003]  
专题中国科学院合肥物质科学研究院
通讯作者Yang, Xianjun
作者单位1.Univ Sci & Technol China, 96 JinZhai Rd Baohe Dist, Hefei 230026, Anhui, Peoples R China
2.Chinese Acad Sci, Hefei Inst Phys Sci, 350 Shushanhu Rd, Hefei 230031, Anhui, Peoples R China
推荐引用方式
GB/T 7714
Pei, Xiaohui,Yang, Xianjun,Wang, Tao,et al. Travel-mode inference based on GPS-trajectory data through multi-scale mixed attention mechanism[J]. HELIYON,2024,10.
APA Pei, Xiaohui.,Yang, Xianjun.,Wang, Tao.,Ding, Zenghui.,Xu, Yang.,...&Sun, Yining.(2024).Travel-mode inference based on GPS-trajectory data through multi-scale mixed attention mechanism.HELIYON,10.
MLA Pei, Xiaohui,et al."Travel-mode inference based on GPS-trajectory data through multi-scale mixed attention mechanism".HELIYON 10(2024).

入库方式: OAI收割

来源:合肥物质科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。