中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Density-functional theory study of SnSe/GeSe heterostructure for gaseous sulfur hexafluoride decomposition products sensing

文献类型:期刊论文

作者Shi, Yijie2,3; Hao, Jiongyue2; Dong, Yingchun2; Guo, Xuezheng2; Liang, Chengyao2; Kibet, Evans2; He, Yuhui4; Ge, Liang1; Gao, Chao2; Miao, Xiangshui4
刊名APPLIED SURFACE SCIENCE
出版日期2024-10-15
卷号670
关键词Sulfur hexafluoride Heterostructures Post-transition metal selenides Gas sensing Density functional theory
ISSN号0169-4332
DOI10.1016/j.apsusc.2024.160701
通讯作者Meng, Gang(menggang@aiofm.ac.cn) ; He, Yong(yonghe@cqu.edu.cn)
英文摘要Partial discharge, local overheating and other factors will lead to the decomposition of superior dielectric gas sulfur hexafluoride (SF6) used in gas insulated substations (GIS). Detecting gaseous sulfur hexafluoride (SF6) decomposition products by gas sensors to diagnose early latent insulation failures is a potential approach to guarantee safety and reliability of gas insulated substations (GIS). However, the main difficulties in the detection of SF6 decomposition products lie in sensitivity, operating temperature and sulfur poisoning of the sensor. Metal oxide selenides (MOSs)-based gas sensors suffer from high working temperature, long recovery time, and sulfur poisoning. Two dimensional selenides-based chemiresistor-type gas sensors have been reported to detect certain gases at room temperature. Compared with pristine materials, heterostructures usually have narrower band gaps and higher carrier mobility which promise low power and sensitivity. In this work, a SnSe/GeSe van der Waals heterostructure model is constructed and optimized to investigate the gas sensing properties by density functional theory (DFT) calculations. Compared with the pristine SnSe and the pristine GeSe, the SnSe/GeSe heterostructure exhibits huge adsorption energy and comparatively large charge transfer to the SF6 decomposition gases. The band structure analysis, charge analysis, electron localization function (ELF), and density of states (DOS) analysis suggest that the excellent sensing properties are contributed to the synergistic effect between the SnSe and the GeSe layers: both the layers transfer charge and orbitally interact with gas molecules. Besides, physical adsorption of the SF6 decomposition gases on SnSe/GeSe heterostructure avoids sulfur poisoning of the material, promising the recoverability and repeatability of detection. This study provides theoretical bases for the repeatable detection of SF6 decomposition products by SnSe/GeSe heterostructures and its potential in the design of electronic nose.
WOS关键词TOTAL-ENERGY CALCULATIONS ; SF6 ; COMPONENTS ; SENSITIVITY ; ADSORPTION ; SNSE2
资助项目Natural Science Foundation of Chongqing[CSTB2022NSCQ-LZX0075] ; Natural Science Foundation of Chongqing[cstc2020jscx-dxwtBX0052] ; Fundamental Research Funds for Central Universities of China[2021CDJXDJH006] ; Fundamental Research Funds for Central Universities of China[2022CDJJMRH-006] ; Fundamental Research Funds for Central Universities of China[2023CDJXY-040] ; Key Laboratory of Gun Launch and Control Technology, NORINCO
WOS研究方向Chemistry ; Materials Science ; Physics
语种英语
WOS记录号WOS:001270963200001
出版者ELSEVIER
资助机构Natural Science Foundation of Chongqing ; Fundamental Research Funds for Central Universities of China ; Key Laboratory of Gun Launch and Control Technology, NORINCO
源URL[http://ir.hfcas.ac.cn:8080/handle/334002/137086]  
专题中国科学院合肥物质科学研究院
通讯作者Meng, Gang; He, Yong
作者单位1.Southwest Petr Univ, Coll Mech & Elect Engn, Chengdu 610500, Peoples R China
2.Chongqing Univ, Coll Optoelect Engn, Key Lab Optoelect Technol & Syst, Educ Minist China, Chongqing 400044, Peoples R China
3.Chongqing Univ, State Key Lab Coal Mine Disaster Dynam & Control, Chongqing 400044, Peoples R China
4.Huazhong Univ Sci & Technol, Sch Integrated Circuits, Wuhan 430074, Peoples R China
5.Chinese Acad Sci, Anhui Inst Opt & Fine Mech, Key Lab Photovolta & Energy Conservat Mat, Hefei 230031, Peoples R China
推荐引用方式
GB/T 7714
Shi, Yijie,Hao, Jiongyue,Dong, Yingchun,et al. Density-functional theory study of SnSe/GeSe heterostructure for gaseous sulfur hexafluoride decomposition products sensing[J]. APPLIED SURFACE SCIENCE,2024,670.
APA Shi, Yijie.,Hao, Jiongyue.,Dong, Yingchun.,Guo, Xuezheng.,Liang, Chengyao.,...&He, Yong.(2024).Density-functional theory study of SnSe/GeSe heterostructure for gaseous sulfur hexafluoride decomposition products sensing.APPLIED SURFACE SCIENCE,670.
MLA Shi, Yijie,et al."Density-functional theory study of SnSe/GeSe heterostructure for gaseous sulfur hexafluoride decomposition products sensing".APPLIED SURFACE SCIENCE 670(2024).

入库方式: OAI收割

来源:合肥物质科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。