中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
The first 10-m China's national-scale sandy beach map in 2022 derived from Sentinel-2 imagery

文献类型:期刊论文

作者Ni, Ming4; Xu, Nan4; Ou, Yifu3; Yao, Jiaqi6,7; Li, Zhichao1; Mo, Fan8; Huang, Conghong2,5; Xin, Huichao4; Xu, Hao4
刊名INTERNATIONAL JOURNAL OF DIGITAL EARTH
出版日期2024-12-31
卷号17期号:1页码:21
关键词Coastal China remote sensing beach national-scale
ISSN号1753-8947
DOI10.1080/17538947.2024.2425163
产权排序5
英文摘要Sandy beaches are at the frontline of resisting continuous sea level rise associated with anthropogenic climate change. However, accurate and comprehensive spatial information for monitoring, utilizing, and protecting sandy beaches is still lacking at the national or above scales. This study, for the first time, addresses this gap by collecting cloud-free, low-tide Sentinel-2 images in 2022 to map 10-m sandy beaches across China using the image classification method. We adopted the Support Vector Machine to derive the spatial distribution of sandy beaches, assess accuracy, and analyze spatial characteristics. Our results demonstrate the efficiency of the SVM model in mapping sandy beaches (User's accuracy: 96%, Kappa coefficient: 0.93). We identified 3,444 beaches in China, with a total length of 3,187.57 km, an average width of 69.93 meters, and a total area of 217.43 km(2), constituting 24.16% of the national coastline. Notably, Guangdong, Taiwan, and Hainan provinces are rich in beach resources, whereas Macao, Shanghai, Tianjin, and Jiangsu provinces have relatively fewer beach resources. Further, our results outperform the existing OpenStreetMap beach dataset. Our developed 10-m beach database is crucial for analyzing potential beach risks, uncovering socioeconomic values of beach resources, and promoting the sustainable coastal zone development in China.
WOS关键词SEA-LEVEL RISE ; COASTLINE CHANGES ; EROSION
资助项目National Natural Science Foundation of China Grant[42301501] ; National Natural Science Foundation of China Grant[42101343] ; Natural Science Foundation of Jiangsu Province[BK20240258] ; Key Laboratory of Land Satellite Remote Sensing Application, Ministry of Natural Resources of the People's Republic of China[KLSMNR-K202309] ; Jiangsu Marine Science and Technology Innovation Project[JSZRHYKJ202302]
WOS研究方向Physical Geography ; Remote Sensing
语种英语
WOS记录号WOS:001353084200001
出版者TAYLOR & FRANCIS LTD
资助机构National Natural Science Foundation of China Grant ; Natural Science Foundation of Jiangsu Province ; Key Laboratory of Land Satellite Remote Sensing Application, Ministry of Natural Resources of the People's Republic of China ; Jiangsu Marine Science and Technology Innovation Project
源URL[http://ir.igsnrr.ac.cn/handle/311030/210967]  
专题陆地表层格局与模拟院重点实验室_外文论文
通讯作者Xu, Nan
作者单位1.Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, Key Lab Land Surface Pattern & Simulat, Beijing, Peoples R China
2.Res Ctr Rural Land Resources Use & Consolidat, Natl & Local Joint Engn, Nanjing, Peoples R China
3.Hong Kong Polytech Univ, Dept Land Surveying & Geoinformat, Hong Kong, Peoples R China
4.Hohai Univ, Coll Geog & Remote Sensing, Sch Earth Sci & Engn, Nanjing 210024, Peoples R China
5.Nanjing Agr Univ, Coll Land Management, Nanjing, Peoples R China
6.Tianjin Normal Univ, Acad Ecol Civilizat Dev JING JIN JI, Tianjin, Peoples R China
7.Tsinghua Univ, Dept Earth Syst Sci, Beijing, Peoples R China
8.Minist Nat Resources, Land Satellite Remote Sensing Applicat Ctr, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Ni, Ming,Xu, Nan,Ou, Yifu,et al. The first 10-m China's national-scale sandy beach map in 2022 derived from Sentinel-2 imagery[J]. INTERNATIONAL JOURNAL OF DIGITAL EARTH,2024,17(1):21.
APA Ni, Ming.,Xu, Nan.,Ou, Yifu.,Yao, Jiaqi.,Li, Zhichao.,...&Xu, Hao.(2024).The first 10-m China's national-scale sandy beach map in 2022 derived from Sentinel-2 imagery.INTERNATIONAL JOURNAL OF DIGITAL EARTH,17(1),21.
MLA Ni, Ming,et al."The first 10-m China's national-scale sandy beach map in 2022 derived from Sentinel-2 imagery".INTERNATIONAL JOURNAL OF DIGITAL EARTH 17.1(2024):21.

入库方式: OAI收割

来源:地理科学与资源研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。