中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Spatiotemporal wind speed forecasting using conditional local convolution and multidimensional meteorology features

文献类型:期刊论文

作者Wang, Meng2,3; Wang, Juanle1,2,3; Yu, Mingming4; Yang, Fei1,2,3
刊名SCIENTIFIC REPORTS
出版日期2024-10-31
卷号14期号:1页码:26219
关键词Wind resources Spatiotemporal wind forecasting Local convolution kernel Recurrent neural network Inner Mongolia region
DOI10.1038/s41598-024-78303-8
产权排序1
文献子类Article
英文摘要Wind speed prediction is crucial for precisely wind power forecasting and reduced maintenance costs. Highland regions, which possess a considerable wind potential, present complex meteorological conditions, making wind speed prediction challenging. Traditional weather forecasting relies on complex statistical methods and extensive prior knowledge. While recent deep learning models have improved prediction accuracy, they often assume uniform influence weight structure, limiting model effectiveness. This study introduces an enhanced Conditional Local Convolution Recurrent Network (CLCRN) model to improve spatiotemporal wind speed forecasting using multidimensional meteorological inputs such as temperature, pressure, and dew point, alongside wind components. This model addresses uniform influence model weight issue by redesigning convolution kernels to better capture local meteorological features and integrating multiple influencing factors. Our model consistently achieves lower Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) values across various prediction intervals (3, 6, 9, and 12 h) compared to other models, supported by the meteorological station data from 2019 to 2021. Furthermore, the spatial distribution of the local convolution weights aligns with local wind velocity patterns in Inner Mongolia, enhancing model interpretability. These results demonstrate potential for practical applications in renewable energy planning and wind dynamics simulation.
WOS研究方向Science & Technology - Other Topics
WOS记录号WOS:001346350300023
源URL[http://ir.igsnrr.ac.cn/handle/311030/209532]  
专题资源与环境信息系统国家重点实验室_外文论文
通讯作者Wang, Juanle
作者单位1.Jiangsu Ctr Collaborat Innovat Geog Informat Resou, Nanjing 210023, Peoples R China
2.Chinese Acad Sci, State Key Lab Resources & Environm Informat Syst, Inst Geog Sci & Nat Resources Res, Beijing 100101, Peoples R China
3.Univ Chinese Acad Sci, Coll Resources & Environm, Beijing 100049, Peoples R China
4.Beihang Univ, Sch Comp Sci & Engn, Beijing 100191, Peoples R China
推荐引用方式
GB/T 7714
Wang, Meng,Wang, Juanle,Yu, Mingming,et al. Spatiotemporal wind speed forecasting using conditional local convolution and multidimensional meteorology features[J]. SCIENTIFIC REPORTS,2024,14(1):26219.
APA Wang, Meng,Wang, Juanle,Yu, Mingming,&Yang, Fei.(2024).Spatiotemporal wind speed forecasting using conditional local convolution and multidimensional meteorology features.SCIENTIFIC REPORTS,14(1),26219.
MLA Wang, Meng,et al."Spatiotemporal wind speed forecasting using conditional local convolution and multidimensional meteorology features".SCIENTIFIC REPORTS 14.1(2024):26219.

入库方式: OAI收割

来源:地理科学与资源研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。