中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
LULC-SegNet: Enhancing Land Use and Land Cover Semantic Segmentation with Denoising Diffusion Feature Fusion

文献类型:期刊论文

作者Shi, Zongwen2,3; Fan, Junfu3,4; Du, Yujie3; Zhou, Yuke4; Zhang, Yi1,5
刊名REMOTE SENSING
出版日期2024-12-01
卷号16期号:23页码:4573
关键词land use and land cover semantic segmentation remote sensing images denoising diffusion probabilistic model feature fusion K-means clustering algorithms
DOI10.3390/rs16234573
产权排序3
文献子类Article
英文摘要Deep convolutional networks often encounter information bottlenecks when extracting land object features, resulting in critical geometric information loss, which impedes semantic segmentation capabilities in complex geospatial backgrounds. We developed LULC-SegNet, a semantic segmentation network for land use and land cover (LULC), which integrates features from the denoising diffusion probabilistic model (DDPM). This network enhances the clarity of the edge segmentation, detail resolution, and the visualization and accuracy of the contours by delving into the spatial details of the remote sensing images. The LULC-SegNet incorporates DDPM decoder features into the LULC segmentation task, utilizing machine learning clustering algorithms and spatial attention to extract continuous DDPM semantic features. The network addresses the potential loss of spatial details during feature extraction in convolutional neural network (CNN), and the integration of the DDPM features with the CNN feature extraction network improves the accuracy of the segmentation boundaries of the geographical features. Ablation and comparison experiments conducted on the Circum-Tarim Basin Region LULC Dataset demonstrate that the LULC-SegNet improved the LULC semantic segmentation. The LULC-SegNet excels in multiple key performance indicators compared to existing advanced semantic segmentation methods. Specifically, the network achieved remarkable scores of 80.25% in the mean intersection over union (MIOU) and 93.92% in the F1 score, surpassing current technologies. The LULC-SegNet demonstrated an IOU score of 73.67%, particularly in segmenting the small-sample river class. Our method adapts to the complex geophysical characteristics of remote sensing datasets, enhancing the performance of automatic semantic segmentation tasks for land use and land cover changes and making critical advancements.
WOS研究方向Environmental Sciences & Ecology ; Geology ; Remote Sensing ; Imaging Science & Photographic Technology
WOS记录号WOS:001377644600001
源URL[http://ir.igsnrr.ac.cn/handle/311030/210441]  
专题资源与环境信息系统国家重点实验室_外文论文
通讯作者Fan, Junfu
作者单位1.Shandong Agr & Engn Univ, Coll Land Resources & Surveying Engn, Zibo 255300, Peoples R China
2.Nanjing Univ Informat Sci & Technol, Sch Geog Sci, Nanjing 210044, Peoples R China
3.Shandong Univ Technol, Sch Civil Engn & Geomat, Zibo 255000, Peoples R China
4.Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, State Key Lab Resources & Environm Informat Syst, Beijing 100101, Peoples R China
5.Cent South Univ, Sch Geosci & Info Phys, Changsha 410083, Peoples R China
推荐引用方式
GB/T 7714
Shi, Zongwen,Fan, Junfu,Du, Yujie,et al. LULC-SegNet: Enhancing Land Use and Land Cover Semantic Segmentation with Denoising Diffusion Feature Fusion[J]. REMOTE SENSING,2024,16(23):4573.
APA Shi, Zongwen,Fan, Junfu,Du, Yujie,Zhou, Yuke,&Zhang, Yi.(2024).LULC-SegNet: Enhancing Land Use and Land Cover Semantic Segmentation with Denoising Diffusion Feature Fusion.REMOTE SENSING,16(23),4573.
MLA Shi, Zongwen,et al."LULC-SegNet: Enhancing Land Use and Land Cover Semantic Segmentation with Denoising Diffusion Feature Fusion".REMOTE SENSING 16.23(2024):4573.

入库方式: OAI收割

来源:地理科学与资源研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。