Rapid lithological mapping using multi-source remote sensing data fusion and automatic sample generation strategy
文献类型:期刊论文
作者 | Zhang, Tao5,6,7; Zhao, Zhifang1,6,7,8; Dong, Pinliang2; Tang, Bo-Hui3,4,10; Zhang, Geng5; Feng, Lunxin6; Zhang, Xinle9 |
刊名 | INTERNATIONAL JOURNAL OF DIGITAL EARTH
![]() |
出版日期 | 2024-12-31 |
卷号 | 17期号:1页码:23 |
关键词 | Lithological mapping sample auto-generation data fusion Google Earth Engine object-based segmentation |
ISSN号 | 1753-8947 |
DOI | 10.1080/17538947.2024.2420824 |
产权排序 | 9 |
英文摘要 | The advancement of remote sensing technology aids geologists in obtaining lithological maps more quickly, comprehensively, and accurately. However, key challenges in lithological mapping include the limited spectral information from individual sensors and the difficulties in visually interpreting lithological samples. In this study, we integrated 241 scenes of optical data and 106 scenes of radar data on the Google Earth Engine (GEE) platform, proposing a rapid lithological identification framework that combines an automatic lithological sample data generation strategy with multi-source data. Using various machine learning algorithms, we evaluated the classification capabilities of heterogeneous predictive factors, feature optimization algorithms, and object-based algorithms. Results indicate that: (1) Combining optical and radar data improves prediction accuracy, with terrain data further enhancing mapping capabilities; (2) Terrain factors contribute most to classification, but SWIR and TIR bands of optical data are critical for lithological identification; (3) The feature optimization algorithm reduces feature redundancy and efficiency issues from multi-source data, achieving 96.51% accuracy with the optimal feature model, an improvement of 0.1%-2.02% over original features; (4) Object-based algorithms show significant potential in mapping areas with large rock outcrops. This study offers new insights for medium- to large-scale lithological maps and provides essential data support for geological work. |
WOS关键词 | IMAGERY ; ASTER ; RICE ; MAP |
资助项目 | National Natural Science Foundation of China[4216106] |
WOS研究方向 | Physical Geography ; Remote Sensing |
语种 | 英语 |
WOS记录号 | WOS:001349228200001 |
出版者 | TAYLOR & FRANCIS LTD |
资助机构 | National Natural Science Foundation of China |
源URL | [http://ir.igsnrr.ac.cn/handle/311030/211066] ![]() |
专题 | 资源与环境信息系统国家重点实验室_外文论文 |
通讯作者 | Zhao, Zhifang |
作者单位 | 1.Engn Res Ctr Domest High Resolut Satellite Remote, Kunming, Peoples R China 2.Univ North Texas, Dept Geog & Environm, Denton, TX USA 3.Yunnan Prov Dept Educ, Key Lab Plateau Remote Sensing, Kunming, Peoples R China 4.Kunming Univ Sci & Technol, Fac Land Resource Engn, Kunming, Peoples R China 5.Yunnan Univ, Inst Int Rivers & Ecosecur, Kunming, Peoples R China 6.Yunnan Int Joint Lab China Laos Bangladesh Myanmar, Kunming, Peoples R China 7.Yunnan Key Lab Sanjiang Metallogeny & Resources Ex, Kunming, Peoples R China 8.Yunnan Univ, Sch Earth Sci, Kunming, Peoples R China 9.Geol Sci Res Inst Yunnan Prov, Kunming, Peoples R China 10.Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, State Key Lab Resources & Environm Informat Syst, Beijing, Peoples R China |
推荐引用方式 GB/T 7714 | Zhang, Tao,Zhao, Zhifang,Dong, Pinliang,et al. Rapid lithological mapping using multi-source remote sensing data fusion and automatic sample generation strategy[J]. INTERNATIONAL JOURNAL OF DIGITAL EARTH,2024,17(1):23. |
APA | Zhang, Tao.,Zhao, Zhifang.,Dong, Pinliang.,Tang, Bo-Hui.,Zhang, Geng.,...&Zhang, Xinle.(2024).Rapid lithological mapping using multi-source remote sensing data fusion and automatic sample generation strategy.INTERNATIONAL JOURNAL OF DIGITAL EARTH,17(1),23. |
MLA | Zhang, Tao,et al."Rapid lithological mapping using multi-source remote sensing data fusion and automatic sample generation strategy".INTERNATIONAL JOURNAL OF DIGITAL EARTH 17.1(2024):23. |
入库方式: OAI收割
来源:地理科学与资源研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。