Decomposing spatio-temporal heterogeneity: Matrix-informed ensemble learning for interpretable prediction
文献类型:期刊论文
作者 | Wang, Lizeng1,4; Cheng, Shifen1,4; Lu, Feng1,2,3,4 |
刊名 | KNOWLEDGE-BASED SYSTEMS
![]() |
出版日期 | 2025-01-30 |
卷号 | 309页码:112906 |
关键词 | Spatio-temporal prediction Ensemble learning Spatio-temporal heterogeneity Matrix decomposition Explainable artificial intelligence |
ISSN号 | 0950-7051 |
DOI | 10.1016/j.knosys.2024.112906 |
产权排序 | 1 |
文献子类 | Article |
英文摘要 | Spatio-temporal prediction aims to forecast location or time-related changes in the physical world with disciplinary knowledge and historical data. Ensemble learning strategies that integrate multiple base learners can leverage the advantages of different models and thus gain wide attention in the field of spatio-temporal prediction. However, existing methods often ignore the unified expression of spatial and temporal heterogeneity in the ensemble process and fail to clarify the mechanisms of model integration under these constraints, limiting the predictive ability and the interpretability of ensemble models. Therefore, this study proposed a Matrix-Informed Ensemble Learning Method (MI-EL) for interpretable spatio-temporal prediction. The core idea of this method is to decompose the spatio-temporal heterogeneous ensemble weight matrix into the multiplication of the spatial and temporal factor matrix. By constructing a spatio-temporal embedding learning module, it utilizes spatial associations and temporal attributes of the samples to solve the spatial and temporal factor matrices, thereby achieving a unified expression of spatial and temporal heterogeneity in the ensemble process. On this basis, interpretable spatial and temporal score vectors are constructed for explicitly expressing the influence intensities and response rules of different base learners under conditions of spatial and temporal heterogeneity. Experiments on traffic flow, traffic speed and air quality prediction tasks show that the proposed method outperforms eight existing ensemble methods in the prediction accuracies at different time steps. Additionally, it effectively identifies the performance patterns of base learners at different spatio-temporal units by assigning higher spatiotemporal scores to better-performing base learners, thereby achieving superior prediction results. |
URL标识 | 查看原文 |
WOS关键词 | COMBINATION |
WOS研究方向 | Computer Science |
语种 | 英语 |
WOS记录号 | WOS:001395012800001 |
出版者 | ELSEVIER |
源URL | [http://ir.igsnrr.ac.cn/handle/311030/211379] ![]() |
专题 | 资源与环境信息系统国家重点实验室_外文论文 |
通讯作者 | Cheng, Shifen |
作者单位 | 1.Chinese Acad Sci, State Key Lab Resources & Environm Informat Syst, Inst Geog Sci & Nat Resources Res, Beijing 100101, Peoples R China; 2.Jiangsu Ctr Collaborat Innovat Geog Informat Resou, Nanjing 210023, Peoples R China 3.Fuzhou Univ, Acad Digital China, Fuzhou, Peoples R China; 4.Univ Chinese Acad Sci, Beijing 100049, Peoples R China; |
推荐引用方式 GB/T 7714 | Wang, Lizeng,Cheng, Shifen,Lu, Feng. Decomposing spatio-temporal heterogeneity: Matrix-informed ensemble learning for interpretable prediction[J]. KNOWLEDGE-BASED SYSTEMS,2025,309:112906. |
APA | Wang, Lizeng,Cheng, Shifen,&Lu, Feng.(2025).Decomposing spatio-temporal heterogeneity: Matrix-informed ensemble learning for interpretable prediction.KNOWLEDGE-BASED SYSTEMS,309,112906. |
MLA | Wang, Lizeng,et al."Decomposing spatio-temporal heterogeneity: Matrix-informed ensemble learning for interpretable prediction".KNOWLEDGE-BASED SYSTEMS 309(2025):112906. |
入库方式: OAI收割
来源:地理科学与资源研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。