Quantifying Global Hydrological Sensitivity to CO2 Physiological and Radiative Forcings Under Large CO2 Increases
文献类型:期刊论文
作者 | Zhang, Xuanze2; Zhang, Yongqiang2; Wang, Ying-Ping3; Tang, Qiuhong2; Ban, Yunyun2; Ren, Chanyue2; Letu, Husi4; Shi, Jiancheng1; Liu, Changming2 |
刊名 | EARTHS FUTURE
![]() |
出版日期 | 2024-12-01 |
卷号 | 12期号:12页码:e2023EF004246 |
关键词 | global water cycle hydrological sensitivity vegetation physiological effect CO2 radiative forcing CMIP6 |
DOI | 10.1029/2023EF004246 |
产权排序 | 1 |
文献子类 | Article |
英文摘要 | Prediction of surface freshwater flux (precipitation or evaporation) in a CO2-enriched climate is highly uncertain, primarily depending on the hydrological responses to physiological and radiative forcings of CO2 increase. Using the 1pctCO(2) (a 1% per year CO2 increase scenario) experiments of 12 CMIP6 models, we first decouple and quantify the magnitude of global hydrological sensitivity to CO2 physiological and radiative forcings. Results show that the direct global hydrological sensitivity (for land plus ocean precipitation) to CO2 increase only is -0.09 +/- 0.07% (100 ppm)(-1) and to CO2-induced warming alone is 1.54 +/- 0.24% K-1. The latter is about 10% larger than the global apparent hydrological sensitivity (i.e., including all effects, not only direct responses to warming, eta a ${\eta }_{a}$ = 1.39 +/- 0.22% K-1). These hydrological sensitivities are relatively stable over transient 2x to 4 x CO2 scenario. The intensification of the global water cycle are dominated by the CO2 radiative effect (79 +/- 12%) with a smaller positive contribution from the interaction between the two effects (6 +/- 12%), but are reduced by the CO2 physiological effect (-10 +/- 8%). This finding underlines the importance of CO2 vegetation physiology in global water cycle projections under a CO2-enriched and warming climate. |
WOS关键词 | CLIMATE-CHANGE ; SYSTEM MODEL ; WATER CYCLE ; VEGETATION ; RESPONSES ; RUNOFF ; OCEAN ; CMIP5 ; INTENSIFICATION ; PRECIPITATION |
WOS研究方向 | Environmental Sciences & Ecology ; Geology ; Meteorology & Atmospheric Sciences |
WOS记录号 | WOS:001371088100001 |
源URL | [http://ir.igsnrr.ac.cn/handle/311030/210448] ![]() |
专题 | 陆地水循环及地表过程院重点实验室_外文论文 |
通讯作者 | Zhang, Xuanze; Zhang, Yongqiang |
作者单位 | 1.Chinese Acad Sci, Natl Space Sci Ctr, Beijing, Peoples R China 2.Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, Key Lab Water Cycle & Related Land Surface Proc, Beijing, Peoples R China 3.CSIRO Environm, Clayton, Vic, Australia 4.Chinese Acad Sci, Aerosp Informat Res Inst, State Key Lab Remote Sensing Sci, Beijing, Peoples R China |
推荐引用方式 GB/T 7714 | Zhang, Xuanze,Zhang, Yongqiang,Wang, Ying-Ping,et al. Quantifying Global Hydrological Sensitivity to CO2 Physiological and Radiative Forcings Under Large CO2 Increases[J]. EARTHS FUTURE,2024,12(12):e2023EF004246. |
APA | Zhang, Xuanze.,Zhang, Yongqiang.,Wang, Ying-Ping.,Tang, Qiuhong.,Ban, Yunyun.,...&Liu, Changming.(2024).Quantifying Global Hydrological Sensitivity to CO2 Physiological and Radiative Forcings Under Large CO2 Increases.EARTHS FUTURE,12(12),e2023EF004246. |
MLA | Zhang, Xuanze,et al."Quantifying Global Hydrological Sensitivity to CO2 Physiological and Radiative Forcings Under Large CO2 Increases".EARTHS FUTURE 12.12(2024):e2023EF004246. |
入库方式: OAI收割
来源:地理科学与资源研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。