Canopy structure dynamics constraints and time sequence alignment for improving retrieval of rice leaf area index from multi-temporal Sentinel-1 imagery
文献类型:期刊论文
作者 | Liu, Yu2; Wang, Bo2; Tao, Junfeng2; Tian, Sijing2; Sheng, Qinghong2; Li, Jun2; Wang, Shuwei3; Liu, Xiaoli4; He, Honglin1 |
刊名 | COMPUTERS AND ELECTRONICS IN AGRICULTURE
![]() |
出版日期 | 2024-12-01 |
卷号 | 227页码:23 |
关键词 | Canopy structure dynamics Dynamic time warping Hierarchical linear model Leaf area index Multi-temporal Sentinel-1 Radar vegetation index Rice |
ISSN号 | 0168-1699 |
DOI | 10.1016/j.compag.2024.109658 |
产权排序 | 4 |
英文摘要 | Due to the limited availability of in-situ observation data, most existing leaf area index (LAI) inversion models do not fully leverage temporal information. Furthermore, the phenological evolution of crops can result in unstable and inaccurate retrieval outcomes. To address these challenges, this study proposes a novel framework for LAI inversion based on Sentinel-1. First, the constrained canopy structure dynamic hierarchical linear model (CSDHLM) is constructed, which integrates canopy dynamics information and temporal constraints. Second, the microwave scattering characteristics at various crop growth stages used to develop the phenological segment dynamic time warping (PSDTW). The PSDTW aims to address the challenges posed by inconsistent phenological dynamics across different plots. The quantitative evaluation results indicate that CSDHLM more accurately captures the temporal changes of LAI (R2 = 0.7688, RMSE = 0.8742) compared to hierarchical linear model (R2 = 0.7234, RMSE = 0.9561) and gaussian process regression (R2 = 0.7143, RMSE = 0.9717). Additionally, the LAI inversion results obtained by combining CSDHLM and PSDTW have greater robustness (R2 = 0.7332, RMSE = 1.4032) across diverse agricultural scenarios. This study emphasizes the importance of phenological information in estimating rice LAI, and the proposed framework is capable of generating long-term rice LAI maps with high resolution, demonstrating significant potential for agricultural applications at the regional scale. |
WOS关键词 | VEGETATION PHENOLOGY ; LAI ; ALGORITHM ; OPTIMIZATION ; PRODUCTS ; SAR ; INFORMATION ; MULTISOURCE ; MODEL ; CORN |
资助项目 | Theory and Method of Satellite Dynamic Photogrammetry for Near-earth Space Object from the National Natural Science Foundation of China[42271448] ; China's National Space Administration[D040307] |
WOS研究方向 | Agriculture ; Computer Science |
语种 | 英语 |
WOS记录号 | WOS:001360524300001 |
出版者 | ELSEVIER SCI LTD |
资助机构 | Theory and Method of Satellite Dynamic Photogrammetry for Near-earth Space Object from the National Natural Science Foundation of China ; China's National Space Administration |
源URL | [http://ir.igsnrr.ac.cn/handle/311030/210639] ![]() |
专题 | 生态系统网络观测与模拟院重点实验室_外文论文 |
通讯作者 | Wang, Bo |
作者单位 | 1.Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, Key Lab Ecosyst Network Observat & Modeling, Beijing 100101, Peoples R China 2.Nanjing Univ Aeronaut & Astronaut, Coll Astronaut, Nanjing 211106, Peoples R China 3.Chinese Acad Sci, Inst Soil Sci, Changshu Natl Agroecosystem Observat & Res Stn, Nanjing 210008, Peoples R China 4.Chinese Acad Sci, Inst Soil Sci, Yingtan Natl Agroecosystem Observat & Res Stn, Nanjing 210008, Peoples R China |
推荐引用方式 GB/T 7714 | Liu, Yu,Wang, Bo,Tao, Junfeng,et al. Canopy structure dynamics constraints and time sequence alignment for improving retrieval of rice leaf area index from multi-temporal Sentinel-1 imagery[J]. COMPUTERS AND ELECTRONICS IN AGRICULTURE,2024,227:23. |
APA | Liu, Yu.,Wang, Bo.,Tao, Junfeng.,Tian, Sijing.,Sheng, Qinghong.,...&He, Honglin.(2024).Canopy structure dynamics constraints and time sequence alignment for improving retrieval of rice leaf area index from multi-temporal Sentinel-1 imagery.COMPUTERS AND ELECTRONICS IN AGRICULTURE,227,23. |
MLA | Liu, Yu,et al."Canopy structure dynamics constraints and time sequence alignment for improving retrieval of rice leaf area index from multi-temporal Sentinel-1 imagery".COMPUTERS AND ELECTRONICS IN AGRICULTURE 227(2024):23. |
入库方式: OAI收割
来源:地理科学与资源研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。