中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Radar-Based Deep Learning for Debris Flow Identification Amid the Environmental Disturbances

文献类型:期刊论文

作者Liu, Shuang3,4; Hu, Kaiheng3,4; Li, Hao3,4; Schoeffl, Tobias1,2; Cheng, Haiguang3,4; Zhang, Xiaopeng3,4
刊名GEOPHYSICAL RESEARCH LETTERS
出版日期2025-01-28
卷号52期号:2页码:10
关键词Doppler radar debris flow deep learning geological disaster monitoring and early warning artificial intelligence
ISSN号0094-8276
DOI10.1029/2024GL112351
英文摘要

Microwave radar, utilizing the differences in Doppler frequencies from moving target echoes, offers remote sensing capabilities and continuous all-weather monitoring for geological disasters. However, intelligent identification of debris flow signals using such radar remains unexplored. Therefore, we implemented 12 deep learning models coupled with a voting strategy to develop classification models for identifying the debris flow, using 24,000 samples across eight categories of targets obtained from field experiments. Each model demonstrated significant proficiency in classification, achieving a remarkable highest accuracy of 95.46% for the multi-object classification. Among the individual models, the vgg16 model with a simple and deep architecture excelled in debris flow identification, exhibiting a high precision and a low false alarm rate. The voting strategy further improved the reliability of individual deep learning model. We propose that employing radar-based deep learning techniques combined with extensive field data represents a crucial advancement in the monitoring and early warning of debris flow.

WOS关键词PULSED DOPPLER RADAR ; AUTOMATIC CLASSIFICATION ; TRIGGERING RAINFALL ; MERAPI VOLCANO ; AVALANCHES ; INTENSITY ; INDONESIA ; DYNAMICS ; SURGES
资助项目Sichuan Science and Technology Program ; Key R&D Program of Xizang Autonomous Region[XZ202301ZY0039G] ; Science and Technology Research Program of Institute of Mountain Hazards and Environment, Chinese Academy of Sciences[IMHE-ZDRW-01] ; [2024NSFSC0072]
WOS研究方向Geology
语种英语
WOS记录号WOS:001396560400001
出版者AMER GEOPHYSICAL UNION
资助机构Sichuan Science and Technology Program ; Key R&D Program of Xizang Autonomous Region ; Science and Technology Research Program of Institute of Mountain Hazards and Environment, Chinese Academy of Sciences
源URL[http://ir.imde.ac.cn/handle/131551/58668]  
专题成都山地灾害与环境研究所_山地灾害与地表过程重点实验室
中国科学院水利部成都山地灾害与环境研究所
通讯作者Liu, Shuang; Hu, Kaiheng
作者单位1.BOKU Univ, Inst Mt Risk Engn IAN, Vienna, Austria
2.IBTP Koschuch, Leutschach An Der Weinstr, Austria
3.Univ Chinese Acad Sci, Beijing, Peoples R China
4.Chinese Acad Sci, Inst Mt Hazards & Environm, Chengdu, Peoples R China
推荐引用方式
GB/T 7714
Liu, Shuang,Hu, Kaiheng,Li, Hao,et al. Radar-Based Deep Learning for Debris Flow Identification Amid the Environmental Disturbances[J]. GEOPHYSICAL RESEARCH LETTERS,2025,52(2):10.
APA Liu, Shuang,Hu, Kaiheng,Li, Hao,Schoeffl, Tobias,Cheng, Haiguang,&Zhang, Xiaopeng.(2025).Radar-Based Deep Learning for Debris Flow Identification Amid the Environmental Disturbances.GEOPHYSICAL RESEARCH LETTERS,52(2),10.
MLA Liu, Shuang,et al."Radar-Based Deep Learning for Debris Flow Identification Amid the Environmental Disturbances".GEOPHYSICAL RESEARCH LETTERS 52.2(2025):10.

入库方式: OAI收割

来源:成都山地灾害与环境研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。