Radar-Based Deep Learning for Debris Flow Identification Amid the Environmental Disturbances
文献类型:期刊论文
作者 | Liu, Shuang3,4![]() ![]() ![]() |
刊名 | GEOPHYSICAL RESEARCH LETTERS
![]() |
出版日期 | 2025-01-28 |
卷号 | 52期号:2页码:10 |
关键词 | Doppler radar debris flow deep learning geological disaster monitoring and early warning artificial intelligence |
ISSN号 | 0094-8276 |
DOI | 10.1029/2024GL112351 |
英文摘要 | Microwave radar, utilizing the differences in Doppler frequencies from moving target echoes, offers remote sensing capabilities and continuous all-weather monitoring for geological disasters. However, intelligent identification of debris flow signals using such radar remains unexplored. Therefore, we implemented 12 deep learning models coupled with a voting strategy to develop classification models for identifying the debris flow, using 24,000 samples across eight categories of targets obtained from field experiments. Each model demonstrated significant proficiency in classification, achieving a remarkable highest accuracy of 95.46% for the multi-object classification. Among the individual models, the vgg16 model with a simple and deep architecture excelled in debris flow identification, exhibiting a high precision and a low false alarm rate. The voting strategy further improved the reliability of individual deep learning model. We propose that employing radar-based deep learning techniques combined with extensive field data represents a crucial advancement in the monitoring and early warning of debris flow. |
WOS关键词 | PULSED DOPPLER RADAR ; AUTOMATIC CLASSIFICATION ; TRIGGERING RAINFALL ; MERAPI VOLCANO ; AVALANCHES ; INTENSITY ; INDONESIA ; DYNAMICS ; SURGES |
资助项目 | Sichuan Science and Technology Program ; Key R&D Program of Xizang Autonomous Region[XZ202301ZY0039G] ; Science and Technology Research Program of Institute of Mountain Hazards and Environment, Chinese Academy of Sciences[IMHE-ZDRW-01] ; [2024NSFSC0072] |
WOS研究方向 | Geology |
语种 | 英语 |
WOS记录号 | WOS:001396560400001 |
出版者 | AMER GEOPHYSICAL UNION |
资助机构 | Sichuan Science and Technology Program ; Key R&D Program of Xizang Autonomous Region ; Science and Technology Research Program of Institute of Mountain Hazards and Environment, Chinese Academy of Sciences |
源URL | [http://ir.imde.ac.cn/handle/131551/58668] ![]() |
专题 | 成都山地灾害与环境研究所_山地灾害与地表过程重点实验室 中国科学院水利部成都山地灾害与环境研究所 |
通讯作者 | Liu, Shuang; Hu, Kaiheng |
作者单位 | 1.BOKU Univ, Inst Mt Risk Engn IAN, Vienna, Austria 2.IBTP Koschuch, Leutschach An Der Weinstr, Austria 3.Univ Chinese Acad Sci, Beijing, Peoples R China 4.Chinese Acad Sci, Inst Mt Hazards & Environm, Chengdu, Peoples R China |
推荐引用方式 GB/T 7714 | Liu, Shuang,Hu, Kaiheng,Li, Hao,et al. Radar-Based Deep Learning for Debris Flow Identification Amid the Environmental Disturbances[J]. GEOPHYSICAL RESEARCH LETTERS,2025,52(2):10. |
APA | Liu, Shuang,Hu, Kaiheng,Li, Hao,Schoeffl, Tobias,Cheng, Haiguang,&Zhang, Xiaopeng.(2025).Radar-Based Deep Learning for Debris Flow Identification Amid the Environmental Disturbances.GEOPHYSICAL RESEARCH LETTERS,52(2),10. |
MLA | Liu, Shuang,et al."Radar-Based Deep Learning for Debris Flow Identification Amid the Environmental Disturbances".GEOPHYSICAL RESEARCH LETTERS 52.2(2025):10. |
入库方式: OAI收割
来源:成都山地灾害与环境研究所
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。