Metallurgical performance evaluation of space-weathered Chang'e-5 lunar soil
文献类型:期刊论文
作者 | Chen Li; Wenhui Ma; Yang Li; Kuixian Wei |
刊名 | International Journal of Minerals, Metallurgy and Materials
![]() |
出版日期 | 2024 |
卷号 | 31页码:1241–1248 |
DOI | 10.1007/s12613-023-2800-9 |
英文摘要 | Space metallurgy is an interdisciplinary field that combines planetary space science and metallurgical engineering. It involves systematic and theoretical engineering technology for utilizing planetary resources in situ. However, space metallurgy on the Moon is challenging because the lunar surface has experienced space weathering due to the lack of atmosphere and magnetic field, making the microstructure of lunar soil differ from that of minerals on the Earth. In this study, scanning electron microscopy and transmission electron microscopy analyses were performed on Chang’e-5 powder lunar soil samples. The microstructural characteristics of the lunar soil may drastically change its metallurgical performance. The main special structure of lunar soil minerals include the nanophase iron formed by the impact of micrometeorites, the amorphous layer caused by solar wind injection, and radiation tracks modified by high-energy particle rays inside mineral crystals. The nanophase iron presents a wide distribution, which may have a great impact on the electromagnetic properties of lunar soil. Hydrogen ions injected by solar wind may promote the hydrogen reduction process. The widely distributed amorphous layer and impact glass can promote the melting and diffusion process of lunar soil. Therefore, although high-energy events on the lunar surface transform the lunar soil, they also increase the chemical activity of the lunar soil. This is a property that earth samples and traditional simulated lunar soil lack. The application of space metallurgy requires comprehensive consideration of the unique physical and chemical properties of lunar soil. |
URL标识 | 查看原文 |
语种 | 英语 |
源URL | [http://ir.gyig.ac.cn/handle/42920512-1/15625] ![]() |
专题 | 地球化学研究所_月球与行星科学研究中心 |
作者单位 | 1.Center for Lunar and Planetary Sciences, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China 2.Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China |
推荐引用方式 GB/T 7714 | Chen Li,Wenhui Ma,Yang Li,et al. Metallurgical performance evaluation of space-weathered Chang'e-5 lunar soil[J]. International Journal of Minerals, Metallurgy and Materials,2024,31:1241–1248. |
APA | Chen Li,Wenhui Ma,Yang Li,&Kuixian Wei.(2024).Metallurgical performance evaluation of space-weathered Chang'e-5 lunar soil.International Journal of Minerals, Metallurgy and Materials,31,1241–1248. |
MLA | Chen Li,et al."Metallurgical performance evaluation of space-weathered Chang'e-5 lunar soil".International Journal of Minerals, Metallurgy and Materials 31(2024):1241–1248. |
入库方式: OAI收割
来源:地球化学研究所
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。