Climate evolution of southwest Australia in the Miocene and its main controlling factors
文献类型:CNKI期刊论文
作者 | Tianqi SUN; Zhaokai XU; Fengming CHANG; Tiegang LI![]() |
发表日期 | 2022-04-24 |
出处 | Science China(Earth Sciences)
![]() |
关键词 | Miocene Southwest Australia Climate evolution Controlling factors International ocean discovery program |
英文摘要 | At present, the seasonal melting and expansion of the Antarctic ice sheet affect the location and intensification of the westerlies, as well as the precipitation and continental weathering and erosion in southwest Australia. The Miocene was an important period when the Earth's climate state transitioned from a warmhouse to an icehouse and the East Antarctic Ice Sheet underwent large-scale melting and expansion. At that time, Australia was closer to the Antarctic region than it is now. This makes Australia an ideal target area for studying the coupling relationship among the atmosphere, hydrosphere, lithosphere, and cryosphere. Based on the comprehensive analysis of the siliciclastic mass accumulation rate, grain size, clay minerals, and elemental composition of the sediments at Site U1516 of the International Ocean Discovery Program Expedition 369, we reconstructed the Miocene climate evolution and the continental weathering and erosion history of southwest Australia on a tectonic time scale. Our indicators show that the climate was dry and that continental weathering and erosion were weak, with a small amount of terrestrial material transported to the ocean during the Early to Middle Miocene(22–12.7 Ma). However, as mentioned in previous studies of nearby sites, precipitation and river runoff increased prominently with enhanced continental weathering at 12.7–8 Ma, which was related to the northward migration or intensification of the westerlies, possibly due to increased sea ice in the Southern Ocean. In addition, we found that the evolution of the South Asian monsoon and the westerly belt were synchronized in the Miocene, which indicates that the South Asian monsoon system at that time may also have been affected by the high-latitude signals of the Southern Hemisphere. We speculate that the significant decrease in deep-sea temperature and the expansion of the surface sea temperature gradient in latitude and longitude until the permanent East Antarctic Ice Sheet formed(~12.8 Ma) played an important role in the transmission of Antarctic signals to low latitudes. |
文献子类 | CNKI期刊论文 |
资助机构 | supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Nos. XDB42000000 and XDB40010100) ; the National Natural Science Foundation of China (Grant Nos. 41876034 and 41676038) |
卷 | v.65期:06页:126-137 |
语种 | 英文; |
分类号 | P467 |
ISSN号 | 1674-7313 |
源URL | [http://ir.qdio.ac.cn/handle/337002/187448] ![]() |
专题 | 中国科学院海洋研究所 |
作者单位 | 1.CenterforOceanMega-Science,ChineseAcademyofSciences 2.KeyLaboratoryofMarineSedimentologyandMetallogeny,FirstInstituteofOceanography,MNR 3.KeyLaboratoryofMarineGeologyandEnvironment,InstituteofOceanology,ChineseAcademyofSciences 4.LaboratoryforMarineGeology,PilotNationalLaboratoryforMarineScienceandTechnology(Qingdao) 5.UniversityofChineseAcademyofSciences 6.CASCenterforExcellenceinQuaternaryScienceandGlobalChange |
推荐引用方式 GB/T 7714 | Tianqi SUN,Zhaokai XU,Fengming CHANG,et al. Climate evolution of southwest Australia in the Miocene and its main controlling factors. 2022. |
入库方式: OAI收割
来源:海洋研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。