中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Progress in ENSO prediction and predictability study

文献类型:CNKI期刊论文

作者Youmin Tang; Rong-Hua Zhang; Ting Liu; Wansuo Duan; Dejian Yang; Fei Zheng; Hongli Ren; Tao Lian; Chuan Gao; Dake Chen
发表日期2018-11-15
出处National Science Review
关键词ENSO prediction and predictability coupled model ensemble prediction optimal error growth probabilistic prediction
英文摘要ENSO is the strongest interannual signal in the global climate system with worldwide climatic, ecological and societal impacts. Over the past decades, the research about ENSO prediction and predictability has attracted broad attention. With the development of coupled models, the improvement in initialization schemes and the progress in theoretical studies, ENSO has become the most predictable climate mode at the time scales from months to seasons. This paper reviews in detail the progress in ENSO predictions and predictability studies achieved in recent years. An emphasis is placed on two fundamental issues: the improvement in practical prediction skills and progress in the theoretical study of the intrinsic predictability limit. The former includes progress in the couple models, data assimilations, ensemble predictions and so on, and the latter focuses on efforts in the study of the optimal error growth and in the estimate of the intrinsic predictability limit.
文献子类CNKI期刊论文
资助机构supported by grants from the National Natural Science Foundation of China(41690124,41690121,41690120,41705049,41621064,41530961) ; the National Key Research and Development Program(2017YFA0604202) ; the National Programe on Global Change and Air-Sea Interaction(GASI-IPOVAI-06) ; the Scientific Research Fund of the Second Institute of Oceanography(JG1810)
v.5期:06页:48-61
语种英文;
分类号P732.4;P714.2
ISSN号2095-5138
源URL[http://ir.qdio.ac.cn/handle/337002/188724]  
专题中国科学院海洋研究所
作者单位1.StateKeyLaboratoryofSatelliteOceanEnvironmentDynamics,SecondInstituteofOceanography
2.EnvironmentalScienceandEngineering,UniversityofNorthernBritishColumbia,PrinceGeorge
3.KeyLaboratoryofOceanCirculationandWaves,InstituteofOceanology,ChineseAcademyofSciences
4.QingdaoNationalLaboratoryforMarineScienceandTechnology
5.StateKeyLaboratoryofNumericalModelingforAtmosphericSciencesandGeophysicalFluidDynamics,InstituteofAtmosphericPhysics,ChineseAcademyofSciences
6.CollegeofOceanography,HohaiUniversity
7.InternationalCenterforClimateandEnvironmentScience,InstituteofAtmosphericPhysics,ChineseAcademyofSciences
8.LaboratoryforClimateStudies&CMA—NJUJointLaboratoryforClimatePredictionStudies,NationalClimateCenter,ChinaMeteorologicalAdministration
9.CollegeofAtmosphericandOceanicScience,FudanUniversity
推荐引用方式
GB/T 7714
Youmin Tang,Rong-Hua Zhang,Ting Liu,et al. Progress in ENSO prediction and predictability study. 2018.

入库方式: OAI收割

来源:海洋研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。