Histo-blood group antigens in Crassostrea gigas and binding profiles with GⅡ.4 Norovirus
文献类型:CNKI期刊论文
作者 | Ma LP(马丽萍); Liu H(刘慧)![]() |
发表日期 | 2018-07-15 |
出处 | Journal of Oceanology and Limnology
![]() |
关键词 | Crassostrea gigas norovirus histo-blood group antigen binding |
英文摘要 | Noroviruses(NoVs) are the main cause of viral gastroenteritis outbreaks worldwide, and oysters are the most common carriers of NoV contamination and transmission. NoVs bind specifically to oyster tissues through histo-blood group antigens(HBGAs), and this facilitates virus accumulation and increases virus persistence in oysters. To investigate the interaction of HBGAs in Pacific oysters with GⅡ.4 NoV, we examined HBGAs with ELISAs and investigated binding patterns with oligosaccharide-binding assays using P particles as a model of five GⅡ.4 NoV capsids. The HBGAs in the gut and gills exhibited polymorphisms. In the gut, type A was detected(100%), whereas type Leb(91.67%) and type A(61.11%) were both observed in the gills. Moreover, we found that seasonal NoV gastroenteritis outbreaks were not significantly associated with the specific HBGAs detected in the oyster gut and gills. In the gut, we found that strain-2006 b and strain-96/96 US bound to type A and H1 but only weakly bound to type Leb; in contrast, the Camberwell and Hunter strains exhibited weak binding to types H1 and Ley, and strain-Sakai exhibited no binding to any HBGA type. In the gills, strain-96/96 US and strain-2006 b bound to type Leb but only weakly bound to type H1; strains Camberwell, Hunter, and Sakai did not bind to oyster HBGAs. Assays for oligosaccharide binding to GⅡ.4 NoV P particles showed that strain-95/96 US and strain-2006 b strongly bound to type A, B, H1, Leb, and Ley oligosaccharides, while strains Camberwell and Hunter showed weak binding ability to type H1 and Ley oligosaccharides and strain-Sakai showed weak binding ability to type Leb and Ley oligosaccharides. Our study presents new information and enhances understanding about the mechanism for NoV accumulation in oysters. Further studies of multiple NoV-tissue interactions might assist in identifying new or improved strategies for minimizing contamination, including HBGA-based attachment inhibition or depuration. |
文献子类 | CNKI期刊论文 |
资助机构 | Supported by the National Natural Science Foundation of China(No.31471663) ; the Qingdao Postdoctoral Application Research Project |
卷 | v.36期:04页:357-365 |
语种 | 英文; |
分类号 | S944.41 |
ISSN号 | 2096-5508 |
源URL | [http://ir.qdio.ac.cn/handle/337002/188882] ![]() |
专题 | 中国科学院海洋研究所 |
作者单位 | 1.KeyLaboratoryofExperimentalMarineBiology,InstituteofOceanology,ChineseAcademyofSciences 2.KeyLaboratoryforSustainableUtilizationofMarineFisheriesResources,MinistryofAgriculture,YellowSeaFisheriesResearchInstitute,ChineseAcademyofFisherySciences 3.LaboratoryforMarineBiologyandBiotechnology,QingdaoNationalLaboratoryforMarineScienceandTechnology |
推荐引用方式 GB/T 7714 | Ma LP,Liu H,Su LJ,et al. Histo-blood group antigens in Crassostrea gigas and binding profiles with GⅡ.4 Norovirus. 2018. |
入库方式: OAI收割
来源:海洋研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。