The role of sea surface salinity in ENSO forecasting in the 21st century
文献类型:期刊论文
作者 | Wang, Haoyu2,3,4; Hu, Shineng1; Guan, Cong2,3![]() |
刊名 | NPJ CLIMATE AND ATMOSPHERIC SCIENCE
![]() |
出版日期 | 2024-09-05 |
卷号 | 7期号:1页码:10 |
ISSN号 | 2397-3722 |
DOI | 10.1038/s41612-024-00763-6 |
通讯作者 | Li, Xiaofeng(lixf@qdio.ac.cn) |
英文摘要 | Significant strides have been made in understanding El Ni & ntilde;o-Southern Oscillation (ENSO) dynamics, yet its long-lead prediction remains challenging, especially for the El Ni & ntilde;o events after 2000. Sea surface salinity (SSS) is known to affect ENSO development and intensity by influencing ocean stratification and heat redistribution and therefore, when combined with sea surface temperature (SST) data, can potentially enhance ENSO forecast skill. In this study, we develop a deep learning (DL) model that incorporates a multiscale-pyramid structure and spatiotemporal feature extraction blocks, and the model successfully extends effective ENSO forecast lead time to 24 months for 2000-2021 with reduced effect of the spring predictability barrier (SPB). Interpretable methods are then applied to reveal the time-dependent roles of SST and SSS in ENSO forecast. More specifically, SST is critical for short-medium lead forecasts (<1 year), while SSS is important for medium-long lead forecasts (>6 months). Furthermore, we track global SST and SSS spatiotemporal shifts related to subsequent ENSO development, highlighting the importance of ocean inter-basin and tropics-extratropics interactions. With increasing availability of satellite SSS observations, our findings unveil unprecedented potential for advancing ENSO long-lead forecast skills. |
WOS关键词 | EXTRATROPICAL ATMOSPHERIC VARIABILITY ; EL-NINO ; INTERACTIVE FEEDBACK ; BARRIER LAYER ; PREDICTION ; MODEL ; OCEAN ; IMPACT ; SKILL |
资助项目 | The 1-Strategic Priority Research Program of the Chinese Academy of Sciences[XDB42000000] ; National Natural Science Foundation of China[42090044] ; National Natural Science Foundation of China[42176008] ; NSFC Innovative Group Grant[42221005] ; Youth Innovation Promotion Association of CAS[2023214] |
WOS研究方向 | Meteorology & Atmospheric Sciences |
语种 | 英语 |
WOS记录号 | WOS:001307858000001 |
出版者 | NATURE PORTFOLIO |
源URL | [http://ir.qdio.ac.cn/handle/337002/198295] ![]() |
专题 | 海洋研究所_海洋环流与波动重点实验室 |
通讯作者 | Li, Xiaofeng |
作者单位 | 1.Duke Univ, Nicholas Sch Environm, Div Earth & Climate Sci, Durham, NC USA 2.Chinese Acad Sci, Inst Oceanol, Key Lab Ocean Observat & Forecasting, Qingdao, Peoples R China 3.Chinese Acad Sci, Inst Oceanol, Key Lab Ocean Circulat & Waves, Qingdao, Peoples R China 4.Univ Chinese Acad Sci, Beijing, Peoples R China |
推荐引用方式 GB/T 7714 | Wang, Haoyu,Hu, Shineng,Guan, Cong,et al. The role of sea surface salinity in ENSO forecasting in the 21st century[J]. NPJ CLIMATE AND ATMOSPHERIC SCIENCE,2024,7(1):10. |
APA | Wang, Haoyu,Hu, Shineng,Guan, Cong,&Li, Xiaofeng.(2024).The role of sea surface salinity in ENSO forecasting in the 21st century.NPJ CLIMATE AND ATMOSPHERIC SCIENCE,7(1),10. |
MLA | Wang, Haoyu,et al."The role of sea surface salinity in ENSO forecasting in the 21st century".NPJ CLIMATE AND ATMOSPHERIC SCIENCE 7.1(2024):10. |
入库方式: OAI收割
来源:海洋研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。