中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Prediction of Multi-Pharmacokinetics Property in Multi-Species: Bayesian Neural Network Stacking Model with Uncertainty

文献类型:期刊论文

作者Zhang, Yuanyuan2,3; Xie, Zhiyin2,3; Xiao, Fu2,4; Yu, Jie1,2,5; Fan, Zhehuan2,3; Sun, Shihui2,4; Shi, Jiangshan2,3; Fu, Zunyun2; Li, Xutong2,3; Wang, Dingyan1
刊名MOLECULAR PHARMACEUTICS
出版日期2024-11-07
页码16
关键词pharmacokinetic parameters machine learning uncertainty stacking multitask learning ADME
ISSN号1543-8384
DOI10.1021/acs.molpharmaceut.4c00406
英文摘要Pharmacokinetic (PK) properties of a drug are vital attributes influencing its therapeutic effectiveness, playing an important role in the drug development process. Focusing on the difficult task of predicting PK parameters, we compiled an extensive data set comprising parameters across multiple species. Building upon this groundwork, we introduced the PKStack ensemble model to predict PK parameters across diverse species. PKStack integrates a variety of base models and includes uncertainty in its predictions. We also manually collected PK data from animals as an external test set. We predicted a total of 45 tasks for nine PK parameters in five species, and in general, the prediction accuracy was better for intravenous injections, including parameters such as human V d (R2 = 0.72, RMSE = 0.31), human CL (R2 = 0.52, RMSE = 0.32), and others. In addition to predictive accuracy, we also considered the interpretability of the results and the definition of the model's application domain. Based on the findings, our model has great potential for practical applications in drug discovery.
WOS关键词MOLECULAR-PROPERTIES ; DRUG DISCOVERY ; IN-VITRO ; PARAMETERS ; PHARMACODYNAMICS ; VOLUME
资助项目National Natural Science Foundation of China[82130108] ; National Natural Science Foundation of China[T2225002] ; National Natural Science Foundation of China[82204278] ; National Natural Science Foundation of China[SIMM0120232001] ; Fund of State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences[22YF1460800] ; Shanghai Sailing Program[2023YFC2305904] ; National Key Research and Development Program of China[2023B1111030004] ; Key Technologies R&D Program of Guangdong Province[2023693] ; Shanghai Postdoctoral Excellence Program
WOS研究方向Research & Experimental Medicine ; Pharmacology & Pharmacy
WOS记录号WOS:001350025900001
出版者AMER CHEMICAL SOC
源URL[http://119.78.100.183/handle/2S10ELR8/314370]  
专题新药研究国家重点实验室
通讯作者Wang, Dingyan; Zheng, Mingyue; Luo, Xiaomin
作者单位1.Lingang Lab, Shanghai 200031, Peoples R China
2.Chinese Acad Sci, Shanghai Inst Mat Med, Drug Discovery & Design Ctr, State Key Lab Drug Res, Shanghai 201203, Peoples R China
3.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
4.Nanjing Univ Chinese Med, Sch Chinese Mat Med, Nanjing 210023, Peoples R China
5.Shanghai Tech Univ, Sch Informat Sci & Technol, Shanghai 201210, Peoples R China
推荐引用方式
GB/T 7714
Zhang, Yuanyuan,Xie, Zhiyin,Xiao, Fu,et al. Prediction of Multi-Pharmacokinetics Property in Multi-Species: Bayesian Neural Network Stacking Model with Uncertainty[J]. MOLECULAR PHARMACEUTICS,2024:16.
APA Zhang, Yuanyuan.,Xie, Zhiyin.,Xiao, Fu.,Yu, Jie.,Fan, Zhehuan.,...&Luo, Xiaomin.(2024).Prediction of Multi-Pharmacokinetics Property in Multi-Species: Bayesian Neural Network Stacking Model with Uncertainty.MOLECULAR PHARMACEUTICS,16.
MLA Zhang, Yuanyuan,et al."Prediction of Multi-Pharmacokinetics Property in Multi-Species: Bayesian Neural Network Stacking Model with Uncertainty".MOLECULAR PHARMACEUTICS (2024):16.

入库方式: OAI收割

来源:上海药物研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。