中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Lightweighting the prediction process of urban states with parameter sharing and dilated operations

文献类型:期刊论文

作者Wang, Peixiao3,4; Yang, Haolong2; Zhang, Hengcai3,4; Cheng, Shifen3,4; Lu, Feng3,4; Chen, Zeqiang1
刊名INTERNATIONAL JOURNAL OF DIGITAL EARTH
出版日期2025-12-31
卷号18期号:1页码:2468414
关键词Urban states spatio-temporal prediction dilated operation parameter sharing hyper-parameter dependence
ISSN号1753-8947
DOI10.1080/17538947.2025.2468414
产权排序1
文献子类Article
英文摘要Lightweight and high-precision prediction models for urban states are anticipated to run efficiently on resource-limited devices, serving as key technologies for realizing smart city management. However, many existing models, despite achieving high prediction precision, suffer from overly complex designs, leading to low computational efficiency, a large number of learnable parameters, and difficulty in hyper-parameter calibration. In this study, we present a lightweight parameter-shared dilated convolutional network (PSDCN) to address these challenges. Specifically, we define parameter-shared temporal/graph dilated convolution operators to efficiently and accurately capture spatio-temporal correlations without significantly increasing model's computation time and scale of learnable parameters. Furthermore, we establish mathematical relationships between hyperparameters, significantly reducing their number and simplifying the calibration process. The PSDCN model was validated using PM2.5, traffic, and temperature datasets. The results demonstrated that the PSDCN model simplifies hyperparameter calibration. It also either outperforms or matches the prediction accuracy of nine baselines, while achieving better time efficiency and requiring fewer learnable parameters.
URL标识查看原文
WOS关键词OPTIMIZATION ; NETWORK
WOS研究方向Physical Geography ; Remote Sensing
语种英语
WOS记录号WOS:001425412200001
出版者TAYLOR & FRANCIS LTD
源URL[http://ir.igsnrr.ac.cn/handle/311030/212270]  
专题资源与环境信息系统国家重点实验室_外文论文
通讯作者Zhang, Hengcai
作者单位1.China Univ Geosci, Natl Engn Res Ctr Geog Informat Syst, Wuhan, Peoples R China
2.Concordia Univ, Gina Cody Sch Engn & Comp Sci, Montreal, PQ, Canada;
3.Univ Chinese Acad Sci, Coll Resources & Environm, Beijing 100049, Peoples R China;
4.Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, State Key Lab Resources & Environm Informat Syst, Beijing 100101, Peoples R China;
推荐引用方式
GB/T 7714
Wang, Peixiao,Yang, Haolong,Zhang, Hengcai,et al. Lightweighting the prediction process of urban states with parameter sharing and dilated operations[J]. INTERNATIONAL JOURNAL OF DIGITAL EARTH,2025,18(1):2468414.
APA Wang, Peixiao,Yang, Haolong,Zhang, Hengcai,Cheng, Shifen,Lu, Feng,&Chen, Zeqiang.(2025).Lightweighting the prediction process of urban states with parameter sharing and dilated operations.INTERNATIONAL JOURNAL OF DIGITAL EARTH,18(1),2468414.
MLA Wang, Peixiao,et al."Lightweighting the prediction process of urban states with parameter sharing and dilated operations".INTERNATIONAL JOURNAL OF DIGITAL EARTH 18.1(2025):2468414.

入库方式: OAI收割

来源:地理科学与资源研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。