中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
A multivariate spatial structure indicator based on geographic similarity

文献类型:期刊论文

作者Zhao, Fang-He4,5; Qin, Cheng-Zhi2,3,4,5; Zhu, A-Xing1; Pei, Tao4,5
刊名INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE
出版日期2025-02-08
卷号N/A
关键词Spatial structure indicator designation multivariate dataset geographic similarity
ISSN号1365-8816
DOI10.1080/13658816.2025.2458639
产权排序1
文献子类Article ; Early Access
英文摘要Quantification of spatial structure reveals the distribution patterns of geographic features, which is essential for geographic analysis. For quantitative measurements of multivariate spatial structure, existing methods often neglect either the geographic meaning or the spatial combination of the multivariate dataset. In this paper, a new indicator for multivariate spatial structure (MuSS) is proposed. Since multivariate datasets characterize geographic conditions, the correlation between multivariate attributes at different locations can be measured as the similarity of geographic conditions. The MuSS indicator evaluates whether location pairs with closer distances have higher geographic similarities. Experimental results show that MuSS outperforms existing methods in differentiate multivariate datasets with varied spatial distribution patterns. A MuSS value deviating from 1 suggests that geographic similarity between location pairs is relevant to their distance, and the statistical significance of the captured distribution patterns is evaluated using a p-value from a permutation test. MuSS is also applied to real geographic data at different spatial resolutions in two study areas with diverse distribution patterns. Case studies show that MuSS provides consistent comparison results for spatial structure levels between study areas, while existing methods cannot.
URL标识查看原文
WOS关键词MORANS-I ; K-FUNCTION ; AUTOCORRELATION ; ASSOCIATION ; SAMPLE
WOS研究方向Computer Science ; Geography ; Physical Geography ; Information Science & Library Science
语种英语
WOS记录号WOS:001417144900001
出版者TAYLOR & FRANCIS LTD
源URL[http://ir.igsnrr.ac.cn/handle/311030/212332]  
专题资源与环境信息系统国家重点实验室_外文论文
通讯作者Zhu, A-Xing
作者单位1.Univ Wisconsin, Dept Geog, Madison, WI 53706 USA
2.Jiangsu Ctr Collaborat Innovat Geog Informat Resou, Nanjing, Peoples R China;
3.Shaanxi Normal Univ, Sch Geog & Tourism, Xian, Peoples R China;
4.Univ Chinese Acad Sci, Coll Resources & Environm, Beijing, Peoples R China;
5.Chinese Acad Sci, State Key Lab Resources & Environm Informat Syst, Inst Geog Sci & Nat Resources Res, Beijing, Peoples R China;
推荐引用方式
GB/T 7714
Zhao, Fang-He,Qin, Cheng-Zhi,Zhu, A-Xing,et al. A multivariate spatial structure indicator based on geographic similarity[J]. INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE,2025,N/A.
APA Zhao, Fang-He,Qin, Cheng-Zhi,Zhu, A-Xing,&Pei, Tao.(2025).A multivariate spatial structure indicator based on geographic similarity.INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE,N/A.
MLA Zhao, Fang-He,et al."A multivariate spatial structure indicator based on geographic similarity".INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE N/A(2025).

入库方式: OAI收割

来源:地理科学与资源研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。