中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
RaHFF-Net: Recall-Adjustable Hierarchical Feature Fusion Network for Remote Sensing Image Change Detection

文献类型:期刊论文

作者Wang, Bin1,2; Zhao, Kang1,2; Xiao, Tong1,2; Qin, Pinle2; Zeng, Jianchao2
刊名IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING
出版日期2025
卷号18页码:176-190
关键词Feature extraction Transformers Semantics Lighting Data mining Tensors Correlation Noise Indexes Adaptation models Change detection (CD) hyperexpectation push pull (HEPP) loss multiscale feature fusion transformer
ISSN号1939-1404
DOI10.1109/JSTARS.2024.3485687
产权排序2
文献子类Article
英文摘要Remote sensing (RS) image change detection (CD) aims to identify areas of interest that have changed between bitemporal images. For complex scenarios (e.g., varying lighting conditions), the diverse shapes and scales of the changed areas is especially vulnerable to cause CD models to suffer from serious missed detections. To address aforementioned problem, we propose a high recall multiscale feature fusion model for RS change interpretation. Initially, the RaHFF-Net extracts hierarchical multiscale feature from bitemporal RS images; Then, it employs CNN and Transformer to effectively merge local and global information across same-scale, cross-scale, and multiscale features. Finally, to address the issue of instance imbalance in CD, a novel hyperexpectation push pull loss regularization term is proposed. This loss function is designed to elevate the expected predictions of positive instances across the dataset, thereby enabling the development of a deep learning model with a high recall rate.
URL标识查看原文
WOS研究方向Engineering ; Physical Geography ; Remote Sensing ; Imaging Science & Photographic Technology
语种英语
WOS记录号WOS:001409622100016
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
源URL[http://ir.igsnrr.ac.cn/handle/311030/212390]  
专题资源与环境信息系统国家重点实验室_外文论文
通讯作者Qin, Pinle
作者单位1.Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, State Key Lab Resources & Environm Informat Syst, Beijing 100101, Peoples R China
2.North Univ China, Dept Comp Sci & Technol, Taiyuan 030051, Peoples R China;
推荐引用方式
GB/T 7714
Wang, Bin,Zhao, Kang,Xiao, Tong,et al. RaHFF-Net: Recall-Adjustable Hierarchical Feature Fusion Network for Remote Sensing Image Change Detection[J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING,2025,18:176-190.
APA Wang, Bin,Zhao, Kang,Xiao, Tong,Qin, Pinle,&Zeng, Jianchao.(2025).RaHFF-Net: Recall-Adjustable Hierarchical Feature Fusion Network for Remote Sensing Image Change Detection.IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING,18,176-190.
MLA Wang, Bin,et al."RaHFF-Net: Recall-Adjustable Hierarchical Feature Fusion Network for Remote Sensing Image Change Detection".IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING 18(2025):176-190.

入库方式: OAI收割

来源:地理科学与资源研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。