中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Insights from Optimized Non-Landslide Sampling and SHAP Explainability for Landslide Susceptibility Prediction

文献类型:期刊论文

作者Li, Mengyuan1,2,3; Tian, Hongling1,2,3
刊名APPLIED SCIENCES-BASEL
出版日期2025-02-01
卷号15期号:3页码:22
关键词landslide susceptibility mapping landslide susceptibility prediction machine learning non-landslide sampling strategy SHAP
ISSN号2076-3417
DOI10.3390/app15031163
英文摘要

The quality of sampling data critically influences landslide susceptibility prediction accuracy. Current studies commonly use a 1:1 ratio of landslide to non-landslide samples, failing to reflect natural geographical variability. This study develops a region-specific framework by integrating SHAP (SHapley Additive exPlanation) analysis with twelve landslide conditioning factors (LCFs) and three progressive sampling strategies, aiming to create adaptive non-landslide point selection criteria tailored to unique environmental and geological characteristics. The strategies include (1) multi-ratio random sampling (1:1 to 1:200), (2) susceptibility-based sampling adjustments derived from pre-susceptibility analysis, and (3) LCF-based correction using the NDVI threshold identified through SHAP analysis. Results show that LCF-based correction achieved the highest performance, while a 1:5 ratio proved optimal in random sampling, aligning with regional characteristics. This framework demonstrates the importance of region-specific sampling strategies in improving landslide susceptibility prediction.

WOS关键词LOGISTIC-REGRESSION ; FREQUENCY RATIO ; MODELS ; AREA
资助项目Science and Technology Research Program of the Institute of Mountain Hazards and Environment, Chinese Academy of Sciences ; [IMHE-CXTD-04]
WOS研究方向Chemistry ; Engineering ; Materials Science ; Physics
语种英语
WOS记录号WOS:001418448500001
出版者MDPI
资助机构Science and Technology Research Program of the Institute of Mountain Hazards and Environment, Chinese Academy of Sciences
源URL[http://ir.imde.ac.cn/handle/131551/58754]  
专题成都山地灾害与环境研究所_山地灾害与地表过程重点实验室
通讯作者Tian, Hongling
作者单位1.Univ Chinese Acad Sci, Beijing 101408, Peoples R China
2.Chinese Acad Sci, Inst Mt Hazards & Environm, Chengdu 610299, Peoples R China
3.State Key Lab Mt Hazards & Engn Resilience, Chengdu 610299, Peoples R China
推荐引用方式
GB/T 7714
Li, Mengyuan,Tian, Hongling. Insights from Optimized Non-Landslide Sampling and SHAP Explainability for Landslide Susceptibility Prediction[J]. APPLIED SCIENCES-BASEL,2025,15(3):22.
APA Li, Mengyuan,&Tian, Hongling.(2025).Insights from Optimized Non-Landslide Sampling and SHAP Explainability for Landslide Susceptibility Prediction.APPLIED SCIENCES-BASEL,15(3),22.
MLA Li, Mengyuan,et al."Insights from Optimized Non-Landslide Sampling and SHAP Explainability for Landslide Susceptibility Prediction".APPLIED SCIENCES-BASEL 15.3(2025):22.

入库方式: OAI收割

来源:成都山地灾害与环境研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。