Insights from Optimized Non-Landslide Sampling and SHAP Explainability for Landslide Susceptibility Prediction
文献类型:期刊论文
作者 | Li, Mengyuan1,2,3; Tian, Hongling1,2,3![]() |
刊名 | APPLIED SCIENCES-BASEL
![]() |
出版日期 | 2025-02-01 |
卷号 | 15期号:3页码:22 |
关键词 | landslide susceptibility mapping landslide susceptibility prediction machine learning non-landslide sampling strategy SHAP |
ISSN号 | 2076-3417 |
DOI | 10.3390/app15031163 |
英文摘要 | The quality of sampling data critically influences landslide susceptibility prediction accuracy. Current studies commonly use a 1:1 ratio of landslide to non-landslide samples, failing to reflect natural geographical variability. This study develops a region-specific framework by integrating SHAP (SHapley Additive exPlanation) analysis with twelve landslide conditioning factors (LCFs) and three progressive sampling strategies, aiming to create adaptive non-landslide point selection criteria tailored to unique environmental and geological characteristics. The strategies include (1) multi-ratio random sampling (1:1 to 1:200), (2) susceptibility-based sampling adjustments derived from pre-susceptibility analysis, and (3) LCF-based correction using the NDVI threshold identified through SHAP analysis. Results show that LCF-based correction achieved the highest performance, while a 1:5 ratio proved optimal in random sampling, aligning with regional characteristics. This framework demonstrates the importance of region-specific sampling strategies in improving landslide susceptibility prediction. |
WOS关键词 | LOGISTIC-REGRESSION ; FREQUENCY RATIO ; MODELS ; AREA |
资助项目 | Science and Technology Research Program of the Institute of Mountain Hazards and Environment, Chinese Academy of Sciences ; [IMHE-CXTD-04] |
WOS研究方向 | Chemistry ; Engineering ; Materials Science ; Physics |
语种 | 英语 |
WOS记录号 | WOS:001418448500001 |
出版者 | MDPI |
资助机构 | Science and Technology Research Program of the Institute of Mountain Hazards and Environment, Chinese Academy of Sciences |
源URL | [http://ir.imde.ac.cn/handle/131551/58754] ![]() |
专题 | 成都山地灾害与环境研究所_山地灾害与地表过程重点实验室 |
通讯作者 | Tian, Hongling |
作者单位 | 1.Univ Chinese Acad Sci, Beijing 101408, Peoples R China 2.Chinese Acad Sci, Inst Mt Hazards & Environm, Chengdu 610299, Peoples R China 3.State Key Lab Mt Hazards & Engn Resilience, Chengdu 610299, Peoples R China |
推荐引用方式 GB/T 7714 | Li, Mengyuan,Tian, Hongling. Insights from Optimized Non-Landslide Sampling and SHAP Explainability for Landslide Susceptibility Prediction[J]. APPLIED SCIENCES-BASEL,2025,15(3):22. |
APA | Li, Mengyuan,&Tian, Hongling.(2025).Insights from Optimized Non-Landslide Sampling and SHAP Explainability for Landslide Susceptibility Prediction.APPLIED SCIENCES-BASEL,15(3),22. |
MLA | Li, Mengyuan,et al."Insights from Optimized Non-Landslide Sampling and SHAP Explainability for Landslide Susceptibility Prediction".APPLIED SCIENCES-BASEL 15.3(2025):22. |
入库方式: OAI收割
来源:成都山地灾害与环境研究所
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。