Estimating latent heat flux of subtropical forests using machine learning algorithms
文献类型:期刊论文
作者 | Sahu, Harekrushna7,8; Burman, Pramit Kumar Deb5,6; Gnanamoorthy, Palingamoorthy4; Song, Qinghai4; Zhang, Yiping4; Wang, Huimin1; Chen, Yaoliang3; Wang, Shusen2 |
刊名 | METEOROLOGICAL APPLICATIONS
![]() |
出版日期 | 2025 |
卷号 | 32期号:1页码:20 |
关键词 | AdaBoost evapotranspiration gradient boosting latent heat flux random forest regression subtropical forest support vector regression |
ISSN号 | 1350-4827 |
DOI | 10.1002/met.70023 |
通讯作者 | Burman, Pramit Kumar Deb(pramit.cat@tropmet.res.in) |
英文摘要 | Latent heat flux (LE) is a measure of the water exchange between Earth's surface and atmosphere, also known as evapotranspiration. It is a fundamental component in the Earth's energy budget and hydrological cycle and plays an important role in regulating the weather and climate. Moderate Resolution Imaging Spectroradiometer (MODIS) offers a gap-filled biophysical product for LE at 8-day temporal and 500-meter spatial resolutions. Nonetheless, validation against the in situ eddy covariance measurement reveals significant errors in MODIS LE estimation. Our study integrates ground-measured, reanalysis and satellite data to predict LE by leveraging the advantage of the data-driven method. The study draws upon flux data derived from the AsiaFlux database, alongside reanalysis datasets from the Indian Monsoon Data Assimilation and Analysis (IMDAA) and the European Centre for Medium-Range Weather Forecasts (ERA5) products, as well as biophysical measurements from the MODIS satellite. An analysis of the annual water budget, based on ERA5 precipitation data, highlights net positive water balances across the study sites. By harnessing diverse datasets, we employ various machine learning regression algorithms. We find the support vector regression superior to linear, lasso, random forest, adaptive boosting and gradient boosting algorithms. This study highlights the robustness of support vector regression and accentuates the impact of climatic and environmental conditions on model performance, ultimately contributing to more precise predictions of latent heat flux. |
WOS关键词 | TROPICAL RAIN-FOREST ; EDDY COVARIANCE MEASUREMENTS ; TERRESTRIAL EVAPOTRANSPIRATION ; REANALYSIS PRODUCTS ; CARBON-DIOXIDE ; LAND-COVER ; WATER ; MODIS ; BALANCE ; CLIMATE |
资助项目 | Ministry of Earth Sciences (MoES) ; Government of India |
WOS研究方向 | Meteorology & Atmospheric Sciences |
语种 | 英语 |
WOS记录号 | WOS:001390826700001 |
出版者 | WILEY |
资助机构 | Ministry of Earth Sciences (MoES) ; Government of India |
源URL | [http://ir.igsnrr.ac.cn/handle/311030/212447] ![]() |
专题 | 中国科学院地理科学与资源研究所 |
通讯作者 | Burman, Pramit Kumar Deb |
作者单位 | 1.Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, Beijing, Peoples R China 2.Nat Resources Canada, Canada Ctr Remote Sensing, Ottawa, ON, Canada 3.Fujian Normal Univ, State Key Lab Subtrop Mt Ecol Minist Sci & Technol, Fuzhou, Peoples R China 4.Chinese Acad Sci, CAS Key Lab Trop Forest Ecol, Xishuangbanna Trop Bot Garden, Menglun, Peoples R China 5.Savitribai Phule Pune Univ, Dept Atmospher & Space Sci, Pune, India 6.Indian Inst Trop Meteorol, Ctr Climate Change Res, Pune, India 7.Indian Inst Technol, Ctr Machine Intelligence & Data Sci, Mumbai, India 8.Def Inst Adv Technol, Dept Math, Pune, India |
推荐引用方式 GB/T 7714 | Sahu, Harekrushna,Burman, Pramit Kumar Deb,Gnanamoorthy, Palingamoorthy,et al. Estimating latent heat flux of subtropical forests using machine learning algorithms[J]. METEOROLOGICAL APPLICATIONS,2025,32(1):20. |
APA | Sahu, Harekrushna.,Burman, Pramit Kumar Deb.,Gnanamoorthy, Palingamoorthy.,Song, Qinghai.,Zhang, Yiping.,...&Wang, Shusen.(2025).Estimating latent heat flux of subtropical forests using machine learning algorithms.METEOROLOGICAL APPLICATIONS,32(1),20. |
MLA | Sahu, Harekrushna,et al."Estimating latent heat flux of subtropical forests using machine learning algorithms".METEOROLOGICAL APPLICATIONS 32.1(2025):20. |
入库方式: OAI收割
来源:地理科学与资源研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。