A new spatiotemporal fusion model for integrating VIIRS and SDGSAT-1 Nighttime light data to generate daily SDGSAT-1 like observations
文献类型:期刊论文
作者 | Bian, Jinhu1,3![]() |
刊名 | INTERNATIONAL JOURNAL OF DIGITAL EARTH
![]() |
出版日期 | 2025-12-31 |
卷号 | 18期号:1页码:21 |
关键词 | Data fusion VIIRS SDGSAT-1 nighttime light NTLSTF model |
ISSN号 | 1753-8947 |
DOI | 10.1080/17538947.2025.2472912 |
英文摘要 | Nighttime light (NTL) data is a critical indicator for understanding social and environmental dynamics, offering unique insights into human activities after dark. However, while providing high temporal resolution, existing NTL datasets like VIIRS suffer from low spatial resolution, limiting their capability for detailed monitoring. There is a growing demand for NTL data with high spatial and temporal resolutions (HSTR). This study proposed a new HSTR NTL data fusion model named Nighttime Light Spatiotemporal Fusion (NTLSTF). This model generated HSTR NTL radiance values similar to SDGSAT-1 by reconstructing NTL features using a combination of spectral, spatial, and temporal weighting from VIIRS and SDGSAT-1 NTL data. Results demonstrated that the predicted SDGSAT-1 images were consistent with real SDGSAT-1 observations from both visual effect and radiance prediction accuracy. The validation of results was further supported by a high Structural Similarity Index (SSIM) of 0.976, with other quantitative metrics such as Coefficient of Determination (R-2), Mean Absolute Error (MAE), and Root Mean Square Error (RMSE), with the values of 0.941, 7.701, and 17.171, respectively. The predicted daily SDGSAT-1-like NTL data for flood disaster emergency response case in Pakistan showed the application potential of the proposed model. |
WOS关键词 | REFLECTANCE FUSION ; PM2.5 ; QUALITY ; IMAGES ; BAND |
资助项目 | National Key Research and Development Program of China[2020YFA0608702] ; National Key Research and Development Program of China[42171382] ; National Key Research and Development Program of China[W2412146] ; National Key Research and Development Program of China[U23A2019] ; National Natural Science Foundation project of China[IMHE-CXTD-03] ; Science and Technology Research Program of Institute of Mountain Hazards and Environment, Chinese Academy of Sciences ; Chinese Academy of Sciences 'Light of West China' Program ; International Research Center of Big Data for Sustainable Development Goals (CBAS) ; CBAS |
WOS研究方向 | Physical Geography ; Remote Sensing |
语种 | 英语 |
WOS记录号 | WOS:001436776400001 |
出版者 | TAYLOR & FRANCIS LTD |
资助机构 | National Key Research and Development Program of China ; National Key Research and Development Program of China ; National Natural Science Foundation project of China ; Science and Technology Research Program of Institute of Mountain Hazards and Environment, Chinese Academy of Sciences ; Chinese Academy of Sciences 'Light of West China' Program ; International Research Center of Big Data for Sustainable Development Goals (CBAS) ; CBAS |
源URL | [http://ir.imde.ac.cn/handle/131551/58788] ![]() |
专题 | 成都山地灾害与环境研究所_数字山地与遥感应用中心 |
通讯作者 | Bian, Jinhu |
作者单位 | 1.Wanglang Mt Remote Sensing Observat & Res Stn Sich, Mianyang 621000, Peoples R China 2.Univ Chinese Acad Sci, Beijing, Peoples R China 3.Chinese Acad Sci, Inst Mt Hazards & Environm, Chengdu 610299, Sichuan, Peoples R China |
推荐引用方式 GB/T 7714 | Bian, Jinhu,Khan, Touseef Ahmad,Li, Ainong,et al. A new spatiotemporal fusion model for integrating VIIRS and SDGSAT-1 Nighttime light data to generate daily SDGSAT-1 like observations[J]. INTERNATIONAL JOURNAL OF DIGITAL EARTH,2025,18(1):21. |
APA | Bian, Jinhu.,Khan, Touseef Ahmad.,Li, Ainong.,Zhao, Jinping.,Deng, Yi.,...&Khan, Muhib Ullah.(2025).A new spatiotemporal fusion model for integrating VIIRS and SDGSAT-1 Nighttime light data to generate daily SDGSAT-1 like observations.INTERNATIONAL JOURNAL OF DIGITAL EARTH,18(1),21. |
MLA | Bian, Jinhu,et al."A new spatiotemporal fusion model for integrating VIIRS and SDGSAT-1 Nighttime light data to generate daily SDGSAT-1 like observations".INTERNATIONAL JOURNAL OF DIGITAL EARTH 18.1(2025):21. |
入库方式: OAI收割
来源:成都山地灾害与环境研究所
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。