A wave-shaped CNN for marine-raft aquaculture-area extraction in SAR images
文献类型:期刊论文
作者 | Guo, Yanjun4; Du, Yunyan3,4; Yan, Ming2; Xie, Ting1; Liu, Moyun2,3; Wang, Nan4 |
刊名 | COMPUTERS AND ELECTRONICS IN AGRICULTURE
![]() |
出版日期 | 2025-05-01 |
卷号 | 232页码:110078 |
关键词 | Remote sensing Synthetic aperture radar (SAR) images Marine-floating-raft aquaculture Deep learning Convolutional neural network (CNN) |
ISSN号 | 0168-1699 |
DOI | 10.1016/j.compag.2025.110078 |
产权排序 | 1 |
文献子类 | Article |
英文摘要 | This paper introduces an innovative deep convolutional neural network, the wave-shaped CNN, tailored for the robust extraction of a marine-raft aquaculture area (MRAA) from synthetic-aperture-radar (SAR) images. Confronting the intricate challenges posed by coherent noise, environmental variability, and the distinction between rafting areas and their background within SAR images, the proposed wave-shaped CNN provides a novel solution for dynamic MRAA monitoring, which collaboratively incorporates the feature-attention subnetwork (FAS) and feature-refinement subnetwork (FRS) with residual connections to refine the feature- extraction process. Specifically, the FAS can adeptly extract both comprehensive global and nuanced local features from the multi-scale characteristics of SAR images. Furthermore, the FRS introduces a series of Nshaped subnetworks aimed at addressing the prevalent issue of edge adhesion observed within SAR images. In addition, a specialized SAR-MRAA dataset is developed, which allows for enriching the resource for the MRAA task in SAR images. Comprehensive experimental analyses conducted on the proposed wave-shaped CNN show its superior performance and effectiveness in MRAA extraction, demonstrating its advantages in establishing baselines within this domain. The code is available at https://github/gmy63000/Wave-shaped-CNN. |
URL标识 | 查看原文 |
WOS研究方向 | Agriculture ; Computer Science |
语种 | 英语 |
WOS记录号 | WOS:001428421200001 |
出版者 | ELSEVIER SCI LTD |
源URL | [http://ir.igsnrr.ac.cn/handle/311030/213229] ![]() |
专题 | 资源与环境信息系统国家重点实验室_外文论文 |
通讯作者 | Du, Yunyan |
作者单位 | 1.Chongqing Univ Technol, Math Sci Res Ctr, 69 Hongguang Ave, Chongqing 400054, Peoples R China 2.ASTAR, Inst High Performance Comp IHPC, 1 Fusionopolis Way 16-16 Connexis North Tower SG, Singapore 138632, Singapore; 3.ASTAR, Ctr Frontier AI Res CFAR, 1 Fusionopolis Way 16-16 Connexis North Tower SG, Singapore 138632, Singapore; 4.Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, State Key Lab Resources & Environm Informat Syst, 11A Datun Rd, Beijing 100101, Peoples R China; |
推荐引用方式 GB/T 7714 | Guo, Yanjun,Du, Yunyan,Yan, Ming,et al. A wave-shaped CNN for marine-raft aquaculture-area extraction in SAR images[J]. COMPUTERS AND ELECTRONICS IN AGRICULTURE,2025,232:110078. |
APA | Guo, Yanjun,Du, Yunyan,Yan, Ming,Xie, Ting,Liu, Moyun,&Wang, Nan.(2025).A wave-shaped CNN for marine-raft aquaculture-area extraction in SAR images.COMPUTERS AND ELECTRONICS IN AGRICULTURE,232,110078. |
MLA | Guo, Yanjun,et al."A wave-shaped CNN for marine-raft aquaculture-area extraction in SAR images".COMPUTERS AND ELECTRONICS IN AGRICULTURE 232(2025):110078. |
入库方式: OAI收割
来源:地理科学与资源研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。