中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Rapid eccentric spin-aligned binary black hole waveform generation based on deep learning

文献类型:期刊论文

作者Shi, Ruijun1,2; Zhou, Yue3; Zhao TY(赵天宇)4; Wang, Zun1,2; Ren, Zhixiang3; Cao, Zhoujian1,2,5
刊名PHYSICAL REVIEW D
出版日期2025-02-07
卷号111期号:4页码:13
ISSN号2470-0010
DOI10.1103/PhysRevD.111.044016
通讯作者Ren, Zhixiang(renzhx@pcl.ac.cn) ; Cao, Zhoujian(zjcao@bnu.edu.cn)
英文摘要Accurate waveform templates of binary black holes (BBHs) with eccentric orbits are essential for the detection and precise parameter estimation of gravitational waves (GWs). While SEOBNRE produces accurate time-domain waveforms for eccentric BBH systems, its generation speed remains a critical bottleneck in analyzing such systems. Accelerating template generation is crucial to data analysis improvement and valuable information extraction from observational data. We present SEOBNRE_AIq5e2, an innovative artificial intelligence-based surrogate model that was crafted to accelerate waveform generation for eccentric, spin-aligned BBH systems. SEOBNRE_AIq5e2 incorporates an advanced adaptive resampling technique during training, enabling the generation of eccentric BBH waveforms with mass ratios up to 5, eccentricities below 0.2, and spins chi Z up to 0.6. It achieves an impressive generation speed of 4.3 ms per waveform with a mean mismatch of 1.02 x 10-3. With the exceptional accuracy and rapid performance, SEOBNRE_AIq5e2 emerges as a promising waveform template for future analysis of eccentric gravitational wave data.
分类号二类/Q1
WOS关键词DYNAMICAL FORMATION ; ADVANCED LIGO ; MERGERS ; 1ST ; SIGNATURES ; SEARCH
资助项目National Key Research and Development Program of China[2021YFC2203001] ; NSFC[11920101003] ; NSFC[12021003] ; Interdisciplinary Research Funds of Beijing Normal University ; CAS Project for Young Scientists in Basic Research Grant[YSBR-006] ; Peng Cheng Laboratory ; Peng Cheng Cloud-Brain
WOS研究方向Astronomy & Astrophysics ; Physics
语种英语
WOS记录号WOS:001470364800007
资助机构National Key Research and Development Program of China ; NSFC ; Interdisciplinary Research Funds of Beijing Normal University ; CAS Project for Young Scientists in Basic Research Grant ; Peng Cheng Laboratory ; Peng Cheng Cloud-Brain
其他责任者Ren, Zhixiang,Cao, Zhoujian
源URL[http://dspace.imech.ac.cn/handle/311007/101046]  
专题力学研究所_国家微重力实验室
作者单位1.Beijing Normal Univ, Inst Frontiers Astron & Astrophys, Beijing 102206, Peoples R China;
2.Beijing Normal Univ, Sch Phys & Astron, Beijing 100875, Peoples R China;
3.Peng Cheng Lab, Shenzhen 518055, Peoples R China;
4.Chinese Acad Sci, Inst Mech, Ctr Gravitat Wave Expt, Natl Micrograv Lab, Beijing 100190, Peoples R China;
5.UCAS, Hangzhou Inst Adv Study, Sch Fundamental Phys & Math Sci, Hangzhou 310024, Peoples R China
推荐引用方式
GB/T 7714
Shi, Ruijun,Zhou, Yue,Zhao TY,et al. Rapid eccentric spin-aligned binary black hole waveform generation based on deep learning[J]. PHYSICAL REVIEW D,2025,111(4):13.
APA Shi, Ruijun,Zhou, Yue,赵天宇,Wang, Zun,Ren, Zhixiang,&Cao, Zhoujian.(2025).Rapid eccentric spin-aligned binary black hole waveform generation based on deep learning.PHYSICAL REVIEW D,111(4),13.
MLA Shi, Ruijun,et al."Rapid eccentric spin-aligned binary black hole waveform generation based on deep learning".PHYSICAL REVIEW D 111.4(2025):13.

入库方式: OAI收割

来源:力学研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。