中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Enhancing landsat 8 land surface temperature retrieval in coastal regions using MODIS atmospheric water vapor data

文献类型:期刊论文

作者Wang, Tianyi1,2,3; Gao, Zhiqiang1,2; Ning, Jicai1,2; Tian, Xinpeng1,2; Wang, De1,2; Wang, Yueqi1,2; Jiang, Xiaopeng1,2; Luan, Xianyi1,2,3
刊名INTERNATIONAL JOURNAL OF REMOTE SENSING
出版日期2025-03-01
页码25
关键词Land surface temperature MODIS mono-window algorithm atmospheric water vapour retrieval coastal zone
ISSN号0143-1161
DOI10.1080/01431161.2025.2466766
通讯作者Ning, Jicai(jcning@yic.ac.cn)
英文摘要The Landsat series has long served as a critical data source for remote sensing-based land surface temperature (LST) retrieval. Accurate LST estimation requires parameters like emissivity and atmospheric transmittance, whose uncertainties can introduce significant errors. This study presents the MODIS three-channel weighted algorithm, which offers robust atmospheric water vapour retrieval capabilities, particularly in regions with high spatial variability such as coastal areas. By analysing variations in atmospheric water vapour across different land cover types, we incorporate these values into Qin's mono-window algorithm for LST calculation and validate the results through two approaches: UAV-based validation and cross-validation. The UAV-based measurements were used to directly compare observed and modelled LST, achieving a high accuracy with an RMSE of 1.01. Cross-validation against existing satellite-derived LST products further confirmed the model's reliability, demonstrating robust consistency with an RMSE of 1.259 K. This integration provides a reliable solution for addressing atmospheric variability in heterogeneous landscapes, with potential applications in climate monitoring and land management.
WOS关键词IR
WOS研究方向Remote Sensing ; Imaging Science & Photographic Technology
语种英语
WOS记录号WOS:001439176600001
资助机构National Center of Technology Innovation for Comprehensive Utilization of Salt-alkali Land, China ; Seed project of Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences
源URL[http://ir.yic.ac.cn/handle/133337/40349]  
专题烟台海岸带研究所_海岸带信息集成与综合管理实验室
通讯作者Ning, Jicai
作者单位1.Chinese Acad Sci, Yantai Inst Coastal Zone Res, CAS Key Lab Coastal Environm Proc & Ecol Remediat, Yantai 264003, Shandong, Peoples R China
2.Chinese Acad Sci, Yantai Inst Coastal Zone Res, Shandong Key Lab Coastal Environm Proc, Yantai, Shandong, Peoples R China
3.Univ Chinese Acad Sci, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Wang, Tianyi,Gao, Zhiqiang,Ning, Jicai,et al. Enhancing landsat 8 land surface temperature retrieval in coastal regions using MODIS atmospheric water vapor data[J]. INTERNATIONAL JOURNAL OF REMOTE SENSING,2025:25.
APA Wang, Tianyi.,Gao, Zhiqiang.,Ning, Jicai.,Tian, Xinpeng.,Wang, De.,...&Luan, Xianyi.(2025).Enhancing landsat 8 land surface temperature retrieval in coastal regions using MODIS atmospheric water vapor data.INTERNATIONAL JOURNAL OF REMOTE SENSING,25.
MLA Wang, Tianyi,et al."Enhancing landsat 8 land surface temperature retrieval in coastal regions using MODIS atmospheric water vapor data".INTERNATIONAL JOURNAL OF REMOTE SENSING (2025):25.

入库方式: OAI收割

来源:烟台海岸带研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。