Enhancing fluorescent probe design through multilayer interaction convolutional networks: advancing biosensing and bioimaging precision
文献类型:期刊论文
作者 | Ma, Gongcheng4; Ding, Qihang6; Zhang, Yuding3; Zeng, Xiaodong1,7; Zhu, Kai5; Chen, Hongli4; Zhang, Wenxuan2; Wang, Qingzhi4; Huang, Shuman5; Gong, Ping3 |
刊名 | CHEMICAL SCIENCE
![]() |
出版日期 | 2025-04-22 |
页码 | 8 |
ISSN号 | 2041-6520 |
DOI | 10.1039/d4sc08695c |
英文摘要 | Fluorescent probes are pivotal in biosensing and bioimaging, necessitating precise spectral tailoring for high-performance applications. Despite their importance, probe design remains largely empirical, a process that is both time-consuming and laborious. To streamline this, we created a comprehensive dataset of over 600 rhodamine fluorescent probes and employed a multilayer interaction convolutional model (MICNet) trained on molecular fingerprints to accurately predict excitation and emission wavelengths. Our model demonstrated high accuracy with mean relative errors (MRE) of 0.1% for excitation and 0.4% for emission wavelengths. Advancing this, we implemented a closed-loop strategy that integrates experimental feedback to iteratively enhance the design algorithm's accuracy, thereby improving the probes' performance and reliability. This method not only accelerates the probe development cycle but also facilitates the creation of spectrally customized fluorescent probes, offering a significant advancement in the field of bioanalytical chemistry. |
WOS关键词 | CYANINES |
资助项目 | Natural Science Foundation of Shandong Province[2023YFC3605502] ; National Key R&D Program of China[52403206] ; National Key R&D Program of China[82273796] ; National Key R&D Program of China[22477129] ; National Key R&D Program of China[U22A20184] ; National Key R&D Program of China[52250077] ; National Key R&D Program of China[52272080] ; National Natural Science Foundation of China[300/505541] ; Program for The Doctoral Scientific Research Foundation of Xinxiang Medical University[242102211076] ; Henan Province Key Science and Technology[20220201093GX] ; Jilin Province Natural Science Foundation of China ; Fundamental Research Funds for the Central Universities[KQTD20210811090115019] ; Shenzhen Science and Technology Program[JCYJ20210324120011030] ; Shenzhen Basic Research (key project) (China)[ZDKYYQ20220008] ; Major Instrumentation Development Program of the Chinese Academy of Sciences[SYS202205] ; Shandong Laboratory Program[ZR2023MB085] ; Shandong Laboratory Program[ZR2024QH253] ; Natural Science Foundation of Shandong Province ; Shenzhen Institutes of Advanced Technology (SIAT) |
WOS研究方向 | Chemistry |
语种 | 英语 |
WOS记录号 | WOS:001471741100001 |
出版者 | ROYAL SOC CHEMISTRY |
源URL | [http://119.78.100.183/handle/2S10ELR8/317500] ![]() |
专题 | 新药研究国家重点实验室 |
通讯作者 | Ding, Qihang; Gong, Ping; Xu, Zhengwei; Hong, Xuechuan |
作者单位 | 1.Chinese Acad Sci, Shanghai Inst Mat Med, State Key Lab Drug Res, Shanghai 201203, Peoples R China 2.Chinese Acad Med Sci & Peking Union Med Coll, Inst Mat Med, Beijing 100050, Peoples R China 3.Chinese Acad Sci, CAS Key Lab Biomed Imaging Sci & Syst, Shenzhen Engn Lab Nanomed & Nanoformulat, CAS Key Lab Hlth Informat,Shenzhen Inst Adv Techno, Shenzhen 518055, Peoples R China 4.Xinxiang Med Univ, Sch Life Sci & Technol, Xinxiang 453003, Peoples R China 5.Henan Normal Univ, Sch Comp & Informat Engn, Key Lab Artificial Intelligence & Personalized Lea, Xinxiang 453007, Peoples R China 6.Korea Univ, Dept Chem, Seoul 02841, South Korea 7.Bohai Rim Adv Res Inst Drug Discovery, Shandong Lab Yantai Drug Discovery, Yantai 264117, Peoples R China 8.Wuhan Univ, Zhongnan Hosp, Sch Pharmaceut Sci, Dept Cardiol, Wuhan 430071, Peoples R China |
推荐引用方式 GB/T 7714 | Ma, Gongcheng,Ding, Qihang,Zhang, Yuding,et al. Enhancing fluorescent probe design through multilayer interaction convolutional networks: advancing biosensing and bioimaging precision[J]. CHEMICAL SCIENCE,2025:8. |
APA | Ma, Gongcheng.,Ding, Qihang.,Zhang, Yuding.,Zeng, Xiaodong.,Zhu, Kai.,...&Hong, Xuechuan.(2025).Enhancing fluorescent probe design through multilayer interaction convolutional networks: advancing biosensing and bioimaging precision.CHEMICAL SCIENCE,8. |
MLA | Ma, Gongcheng,et al."Enhancing fluorescent probe design through multilayer interaction convolutional networks: advancing biosensing and bioimaging precision".CHEMICAL SCIENCE (2025):8. |
入库方式: OAI收割
来源:上海药物研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。