Innovative Polyimide Modifications for Aerospace and Optoelectronic Applications: Synergistic Enhancements in Thermal, Mechanical, and Optical Properties
文献类型:期刊论文
作者 | Chen YW(陈钰玮)1; Liu YD(刘屹东)2,3; Min, Yonggang1 |
刊名 | ACS APPLIED MATERIALS & INTERFACES
![]() |
出版日期 | 2025-02-01 |
卷号 | 17期号:10页码:16016-16026 |
关键词 | twisted biphenyl structure polyimide densityfunctional theory thermal stability photoluminescence |
ISSN号 | 1944-8244 |
DOI | 10.1021/acsami.4c21102 |
英文摘要 | This study pioneers a molecular topology engineering strategy by incorporating a twisted diamine motif into polyimide (PI) backbones, achieving an unprecedented integration of thermal stability, mechanical robustness, and optoelectronic functionality that surpasses conventional high-performance PIs. Unlike traditional PIs constrained by performance trade-offs (e.g., compromised flexibility for thermal resistance or sacrificed bulk properties for functionalization), the modified PI demonstrates a breakthrough balance: thermal degradation temperature (T5%) exceeding 560 degrees C, glass transition temperature (Tg) of 380 degrees C, and tensile strength of 160-180 MPa. Crucially, it exhibits green fluorescence (505-515 nm) under 365/467 nm excitation-a previously unreported optical capability in PIs. Molecular dynamics/density functional theory (MD/DFT) simulations coupled with UV-vis and mechanical analyses reveal that the twisted conformation induces molecular orbital reorganization and optimized stress distribution, establishing a design framework for multifunctional PIs. In contrast to additive-dependent modification approaches, this topology-driven strategy enables intrinsic multifunctionality while maintaining compatibility with industrial polymerization processes, overcoming scalability challenges in functional PI production. The work redefines PI applications in aerospace composites, optoelectronic systems, and next-gen sensors under extreme conditions, while providing a paradigm for developing performance-integrated polymers through rational topological design. |
分类号 | 二类/Q1 |
WOS研究方向 | Nanoscience & Nanotechnology ; Materials Science, Multidisciplinary ; Science & Technology - Other Topics ; Materials Science |
语种 | 英语 |
WOS记录号 | WOS:001433808700001 |
资助机构 | This research was supported by the High-level Innovation Research Institute Program of Guangdong Province (2020B0909010003/GARA2023001000), National Natural Science Foundation of China (U20A20340), Foshan Introducing Innovative and Entrepreneurial Teams (1920001000108), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB0910303). |
其他责任者 | 陈钰玮,Min, Yonggang |
源URL | [http://dspace.imech.ac.cn/handle/311007/101463] ![]() |
专题 | 宽域飞行工程科学与应用中心 |
作者单位 | 1.Guangdong University of Technology; 2.Institute of Mechanics, Chinese Academy of Sciences, Beijing; 100190, China; 3.Guangdong Aerosp Res Acad |
推荐引用方式 GB/T 7714 | Chen YW,Liu YD,Min, Yonggang. Innovative Polyimide Modifications for Aerospace and Optoelectronic Applications: Synergistic Enhancements in Thermal, Mechanical, and Optical Properties[J]. ACS APPLIED MATERIALS & INTERFACES,2025,17(10):16016-16026. |
APA | 陈钰玮,刘屹东,&Min, Yonggang.(2025).Innovative Polyimide Modifications for Aerospace and Optoelectronic Applications: Synergistic Enhancements in Thermal, Mechanical, and Optical Properties.ACS APPLIED MATERIALS & INTERFACES,17(10),16016-16026. |
MLA | 陈钰玮,et al."Innovative Polyimide Modifications for Aerospace and Optoelectronic Applications: Synergistic Enhancements in Thermal, Mechanical, and Optical Properties".ACS APPLIED MATERIALS & INTERFACES 17.10(2025):16016-16026. |
入库方式: OAI收割
来源:力学研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。