Morpho-photometric Classification of KiDS DR5 Sources Based on Neural Networks: A Comprehensive Star-Quasar-Galaxy Catalog
文献类型:期刊论文
作者 | Feng HC(封海成)14,15,16,17![]() ![]() ![]() ![]() ![]() |
刊名 | ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES
![]() |
出版日期 | 2025-07-01 |
卷号 | 279期号:1 |
ISSN号 | 0067-0049 |
DOI | 10.3847/1538-4365/adde5a |
产权排序 | 第1完成单位 |
文献子类 | Article |
英文摘要 | We present a novel multimodal neural network (MNN) for classifying astronomical sources in multiband ground-based observations, from optical to near-infrared (NIR), to separate sources in stars, galaxies, and quasars. Our approach combines a convolutional neural network branch for learning morphological features from r-band images with an artificial neural network branch for extracting spectral energy distribution (SED) information. Specifically, we have used nine-band optical (ugri) and NIR (ZYHJKs) data from the Kilo-Degree Survey (KiDS) Data Release 5. The two branches of the network are concatenated and feed into fully connected layers for final classification. We train the network on a spectroscopically confirmed sample from the Sloan Digital Sky Survey crossmatched with KiDS. The trained model achieves 98.76% overall accuracy on an independent testing data set, with F1-scores exceeding 95% for each class. Raising the output probability threshold, we obtain higher purity at the cost of lower completeness. We have also validated the network using external catalogs crossmatched with KiDS, correctly classifying 99.74% of a pure star sample selected from Gaia parallaxes and proper motions, and 99.74% of an external galaxy sample from the Galaxy and Mass Assembly survey, adjusted for low-redshift contamination. We apply the trained network to 27,335,836 KiDS DR5 sources with r <= 23 mag to generate a new classification catalog. This MNN successfully leverages both morphological and SED information to enable efficient and robust classification of stars, quasars, and galaxies in large photometric surveys. |
学科主题 | 天文学 ; 星系与宇宙学 |
URL标识 | 查看原文 |
出版地 | TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND |
WOS关键词 | DIGITAL SKY SURVEY ; DATA RELEASE ; ENERGY-DISTRIBUTIONS ; QSO CLASSIFICATION ; SELECTION ; REDSHIFT ; PARAMETERS ; SCIENCE ; SEARCH ; MATTER |
资助项目 | MOST divided by National Natural Science Foundation of China (NSFC)https://doi.org/10.13039/501100001809[2021YFA1600404]; National Key R&D Program of China[12203096]; National Key R&D Program of China[12303022]; National Key R&D Program of China[12203050]; National Key R&D Program of China[12373018]; National Key R&D Program of China[11991051]; National Key R&D Program of China[12203041]; National Natural Science Foundation of China[202301AT070358]; National Natural Science Foundation of China[202301AT070339]; Yunnan Fundamental Research Projects; Yunnan Postdoctoral Research Foundation; Special Research Assistant Funding Project of Chinese Academy of Sciences[CMS-CSST-2021-A01]; China Manned Space Project[2024JJ2040]; Hunan Outstanding Youth Science Foundation[12150710511]; NSFC, Research Fund for Excellent International Scholars |
WOS研究方向 | Astronomy & Astrophysics |
语种 | 英语 |
WOS记录号 | WOS:001523832500001 |
出版者 | IOP Publishing Ltd |
资助机构 | MOST divided by National Natural Science Foundation of China (NSFC)https://doi.org/10.13039/501100001809[2021YFA1600404] ; National Key R&D Program of China[12203096, 12303022, 12203050, 12373018, 11991051, 12203041] ; National Natural Science Foundation of China[202301AT070358, 202301AT070339] ; Yunnan Fundamental Research Projects ; Yunnan Postdoctoral Research Foundation ; Special Research Assistant Funding Project of Chinese Academy of Sciences[CMS-CSST-2021-A01] ; China Manned Space Project[2024JJ2040] ; Hunan Outstanding Youth Science Foundation[12150710511] ; NSFC, Research Fund for Excellent International Scholars |
版本 | 出版稿 |
源URL | [http://ir.ynao.ac.cn/handle/114a53/28405] ![]() |
专题 | 云南天文台_丽江天文观测站(南方基地) 云南天文台_中国科学院天体结构与演化重点实验室 星系类星体研究组 |
通讯作者 | Feng HC(封海成) |
作者单位 | 1.South-Western Institute for Astronomy Research, Yunnan University, Kunming 650500, People’s Republic of China 2.Department of Physics, School of Physics and Electronics, Hunan Normal University, Changsha 410081, People’s Republic of China; 3.Shanghai Astronomical Observatory, Chinese Academy of Sciences, Shanghai 200030, People’s Republic of China; 4.INAF—Osservatorio Astronomico di Padova, via dell’Osservatorio 5, 35122 Padova, Italy; 5.Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871, People’s Republic of China; 6.Department of Astronomy, School of Physics, Peking University, Beijing 100871, People’s Republic of China; 7.National Astronomical Observatories, Chinese Academy of Sciences, 20A Datun Road, Chaoyang District, Beijing 100012, People’s Republic of China; 8.University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China; 9.School of Mathematics and Physics, Xi’an Jiaotong-Liverpool University, 111 Renai Road, Suzhou, 215123, People’s Republic of China; 10.INAF—Osservatorio Astronomico di Capodimonte, Salita Moiariello 16, 80131—Napoli, Italy; |
推荐引用方式 GB/T 7714 | Feng HC,Li, Rui,Napolitano, Nicola R.,et al. Morpho-photometric Classification of KiDS DR5 Sources Based on Neural Networks: A Comprehensive Star-Quasar-Galaxy Catalog[J]. ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES,2025,279(1). |
APA | 封海成.,Li, Rui.,Napolitano, Nicola R..,李莎莎.,白金明.,...&Zhang, Yang-Wei.(2025).Morpho-photometric Classification of KiDS DR5 Sources Based on Neural Networks: A Comprehensive Star-Quasar-Galaxy Catalog.ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES,279(1). |
MLA | 封海成,et al."Morpho-photometric Classification of KiDS DR5 Sources Based on Neural Networks: A Comprehensive Star-Quasar-Galaxy Catalog".ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES 279.1(2025). |
入库方式: OAI收割
来源:云南天文台
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。