Assessing the Accuracy and Consistency of Cropland Datasets and Their Influencing Factors on the Tibetan Plateau
文献类型:期刊论文
作者 | Zhang, Fuyao1,2; Wang, Xue1; Xin, Liangjie1; Li, Xiubin1,2 |
刊名 | REMOTE SENSING
![]() |
出版日期 | 2025-05-27 |
卷号 | 17期号:11页码:1866 |
关键词 | Tibetan Plateau cropland dataset accuracy assessment spatial consistency structural equation model (SEM) |
DOI | 10.3390/rs17111866 |
产权排序 | 1 |
文献子类 | Article |
英文摘要 | With advancements in cloud computing and machine learning algorithms, an increasing number of cropland datasets have been developed, including the China land-cover dataset (CLCD) and GlobeLand30 (GLC). The unique climatic conditions of the Tibetan Plateau (TP) introduce significant differences and uncertainties to these datasets. Here, we used a quantitative and visual integrated assessment approach to assess the accuracy and spatial consistency of five cropland datasets around 2020 in the TP, namely the CLCD, GLC30, land-use remote sensing monitoring dataset in China (CNLUCC), Global Land Analysis and Discovery (GLAD), and global land-cover product with a fine classification system (GLC_FCS). We analyzed the impact of terrain, climate, population, and vegetation indices on cropland spatial consistency using structural equation modeling (SEM). In this study, the GLAD cropland area had the highest fit with the national land survey (R2 = 0.88). County-level analysis revealed that the CLCD and GLC_FCS underestimated cropland areas in high-elevation counties, whereas the GLC and CNLUCC tended to overestimate cropland areas on the TP. Considering overall accuracy, GLC and GLAD performed the best with scores of 0.76 and 0.75, respectively. In contrast, CLCD (0.640), GLC_FCS (0.640), and CNLUCC (0.620) exhibited poor overall accuracy. This study highlights the significantly low spatial consistency of croplands on the TP, with only 10.60% consistency in high and complete agreement. The results showed substantial differences in spatial accuracy among zones, with relatively higher consistency observed in low-altitude zones and notably poorer accuracy in zones with sparse or fragmented cropland. The SEM results indicated that elevation and slope directly influenced cropland consistency, whereas temperature and precipitation indirectly affected cropland consistency by influencing vegetation indices. This study provides a valuable reference for implementing cropland datasets and future cropland mapping studies on the TP region. |
URL标识 | 查看原文 |
WOS关键词 | DYNAMICS ; CHINA |
WOS研究方向 | Environmental Sciences & Ecology ; Geology ; Remote Sensing ; Imaging Science & Photographic Technology |
语种 | 英语 |
WOS记录号 | WOS:001505838100001 |
出版者 | MDPI |
源URL | [http://ir.igsnrr.ac.cn/handle/311030/214642] ![]() |
专题 | 陆地表层格局与模拟院重点实验室_外文论文 |
通讯作者 | Wang, Xue |
作者单位 | 1.Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, Key Lab Land Surface Pattern & Simulat, Beijing 100101, Peoples R China; 2.Univ Chinese Acad Sci, Coll Resources & Environm, Beijing 100049, Peoples R China |
推荐引用方式 GB/T 7714 | Zhang, Fuyao,Wang, Xue,Xin, Liangjie,et al. Assessing the Accuracy and Consistency of Cropland Datasets and Their Influencing Factors on the Tibetan Plateau[J]. REMOTE SENSING,2025,17(11):1866. |
APA | Zhang, Fuyao,Wang, Xue,Xin, Liangjie,&Li, Xiubin.(2025).Assessing the Accuracy and Consistency of Cropland Datasets and Their Influencing Factors on the Tibetan Plateau.REMOTE SENSING,17(11),1866. |
MLA | Zhang, Fuyao,et al."Assessing the Accuracy and Consistency of Cropland Datasets and Their Influencing Factors on the Tibetan Plateau".REMOTE SENSING 17.11(2025):1866. |
入库方式: OAI收割
来源:地理科学与资源研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。