中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Unveiling optimal SDG pathways: an innovative automated recommendation approach integrating graph pruning, intent graph, and attention mechanism

文献类型:期刊论文

作者Wang, Qiang1,2; Yu, Zhihang3,4; Wang, Shu1,2,5; Zhu, Yunqiang1,2,5; Dai, Xiaoliang1,2; Zou, Zhiqiang3,4; Huang, Weiming6; Claramunt, Christophe2,7
刊名INTERNATIONAL JOURNAL OF DIGITAL EARTH
出版日期2025-12-31
卷号18期号:1页码:2513048
关键词Sustainable development pathways ecological civilization pattern recommender system knowledge graph pruning intent graph
ISSN号1753-8947
DOI10.1080/17538947.2025.2513048
产权排序1
文献子类Article
英文摘要The recommendation of Sustainable Development Pathways (SDPs) is crucial for achieving the United Nations Sustainable Development Goals (SDGs) at regional level. However, traditional recommendation algorithms struggle with two key challenges: spatial heterogeneity and sparse historical interaction records between regions and SDPs. To address these issues, we introduce the Regional Graph-Based Explainable Recommendation (RGB-ER) method. RGB-ER leverages a pruned Regional Graph (RG) to capture regional spatial heterogeneity, incorporating environmental, economic, and social factors into the recommendations. In addition, an Intent Graph models regional preferences across various attributes, bridging historical interactions with the RG and mitigating data sparsity. This dual approach significantly improves recommendation accuracy and interpretability. Extensive experiments show that RGB-ER outperforms state-of-the-art graph-based models, with a maximum improvement of 9.61% in Top-3 recommendation accuracy. A case study in Fujian Province - a region characterized by its mountainous terrain, complex socio-economic landscape, and significant sustainability challenges - illustrates RGB-ER's practical applicability, aligning well with local government strategies for sustainable development. Furthermore, we assess SDPs at the county level across China, highlighting the method's potential for guiding region-specific sustainable development planning. In conclusion, RGB-ER provides a robust, explainable framework for data-driven decision-making in sustainable development.
URL标识查看原文
WOS研究方向Physical Geography ; Remote Sensing
语种英语
WOS记录号WOS:001502973800001
出版者TAYLOR & FRANCIS LTD
源URL[http://ir.igsnrr.ac.cn/handle/311030/214563]  
专题资源与环境信息系统国家重点实验室_外文论文
通讯作者Wang, Shu
作者单位1.Univ Chinese Acad Sci, Beijing, Peoples R China;
2.Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, State Key Lab Resources & Environm Informat Syst, 11A Datun Rd, Beijing 100101, Peoples R China;
3.Nanjing Univ Posts & Telecommun, Coll Comp, Nanjing, Peoples R China;
4.Nanjing Univ Posts & Telecommun, Jiangsu Key Lab Big Data Secur & Intelligent Proc, Nanjing, Peoples R China;
5.Jiangsu Ctr Collaborat Innovat Geog Informat Resou, Nanjing, Peoples R China;
6.Univ Leeds, Sch Geog, Leeds, England;
7.Naval Acad Res Inst, Lanveoc, France
推荐引用方式
GB/T 7714
Wang, Qiang,Yu, Zhihang,Wang, Shu,et al. Unveiling optimal SDG pathways: an innovative automated recommendation approach integrating graph pruning, intent graph, and attention mechanism[J]. INTERNATIONAL JOURNAL OF DIGITAL EARTH,2025,18(1):2513048.
APA Wang, Qiang.,Yu, Zhihang.,Wang, Shu.,Zhu, Yunqiang.,Dai, Xiaoliang.,...&Claramunt, Christophe.(2025).Unveiling optimal SDG pathways: an innovative automated recommendation approach integrating graph pruning, intent graph, and attention mechanism.INTERNATIONAL JOURNAL OF DIGITAL EARTH,18(1),2513048.
MLA Wang, Qiang,et al."Unveiling optimal SDG pathways: an innovative automated recommendation approach integrating graph pruning, intent graph, and attention mechanism".INTERNATIONAL JOURNAL OF DIGITAL EARTH 18.1(2025):2513048.

入库方式: OAI收割

来源:地理科学与资源研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。