中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
CA-STIM: an interpolation model with spatio-temporal evolution characteristics and cross-attention mechanism for 2D island morphology sequences

文献类型:期刊论文

作者Zhang, Peng1,2; Wu, Wenzhou1,2; Shi, Shaochen1,3; Li, Fengyu1,2; Su, Fenzhen1,2
刊名INTERNATIONAL JOURNAL OF DIGITAL EARTH
出版日期2025-12-31
卷号18期号:1页码:2513591
关键词Spatial morphology evolution of islands interpolation cross attention feature fusion deep learning
ISSN号1753-8947
DOI10.1080/17538947.2025.2513591
产权排序1
文献子类Article
英文摘要Coral islands are highly susceptible to climate change, making it crucial to understand their spatial morphological evolution for sustainable development and management. Recent advancements in high spatio-temporal resolution earth observation technologies have facilitated the analysis and prediction of island morphology over medium to short timescales. However, issues such as cloud cover and atmospheric interference often lead to poor image quality, resulting in significant missing in the 2D morphology sequences extracted from remote sensing images. To address this issue, we propose a spatio-temporal interpolation model (CA-STIM) that integrates both external environmental dynamics and the intrinsic spatio-temporal evolution characteristics of island morphology using a convolutional neural network-long short-term memory network (CNN-LSTM) framework with a cross-attention mechanism and a weighted binary cross-entropy loss function. The cross-attention mechanism incorporates external environmental factors, enhancing the interpolation accuracy, while the weighted binary cross-entropy loss function effectively addresses the challenge of directional heterogeneity. Using three coral islands in the South China Sea (Beizi, Mahuan, and Xiyue) as case studies, we perform 2D spatial morphology series interpolation. Experimental results demonstrate that our model outperforms baseline methods, achieving Dice scores of 0.9681, 0.9675, and 0.975 and Intersection-over-Union (IOU) scores of 0.9383, 0.9373, and 0.9513 on Beizi, Mahuan, and Xiyue Island, respectively.
URL标识查看原文
WOS关键词SPATIAL INTERPOLATION ; EARTH OBSERVATION ; FUSION
WOS研究方向Physical Geography ; Remote Sensing
语种英语
WOS记录号WOS:001502972300001
出版者TAYLOR & FRANCIS LTD
源URL[http://ir.igsnrr.ac.cn/handle/311030/214564]  
专题资源与环境信息系统国家重点实验室_外文论文
通讯作者Wu, Wenzhou
作者单位1.Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, State Key Lab Resources & Environm Informat Syst, Beijing 100101, Peoples R China;
2.Univ Chinese Acad Sci, Coll Resource & Environm, Beijing 100049, Peoples R China;
3.Lanzhou Jiaotong Univ, Fac Geomat, Lanzhou, Peoples R China
推荐引用方式
GB/T 7714
Zhang, Peng,Wu, Wenzhou,Shi, Shaochen,et al. CA-STIM: an interpolation model with spatio-temporal evolution characteristics and cross-attention mechanism for 2D island morphology sequences[J]. INTERNATIONAL JOURNAL OF DIGITAL EARTH,2025,18(1):2513591.
APA Zhang, Peng,Wu, Wenzhou,Shi, Shaochen,Li, Fengyu,&Su, Fenzhen.(2025).CA-STIM: an interpolation model with spatio-temporal evolution characteristics and cross-attention mechanism for 2D island morphology sequences.INTERNATIONAL JOURNAL OF DIGITAL EARTH,18(1),2513591.
MLA Zhang, Peng,et al."CA-STIM: an interpolation model with spatio-temporal evolution characteristics and cross-attention mechanism for 2D island morphology sequences".INTERNATIONAL JOURNAL OF DIGITAL EARTH 18.1(2025):2513591.

入库方式: OAI收割

来源:地理科学与资源研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。