中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Simulating the Carbon, Nitrogen, and Phosphorus of Plant Above-Ground Parts in Alpine Grasslands of Xizang, China

文献类型:期刊论文

作者Xiang, Mingxue1; Fu, Gang2; Cheng, Jianghao1; Ma, Tao1; Ma, Yunqiao1; Zheng, Kai1; Wang, Zhaoqi1
刊名AGRONOMY-BASEL
出版日期2025-06-09
卷号15期号:6页码:1413
关键词alpine grasslands big data mining global change random forest Qinghai-Xizang Plateau
DOI10.3390/agronomy15061413
产权排序2
文献子类Article
英文摘要Carbon (C), nitrogen (N), and phosphorus (P) act as pivotal regulators of biogeochemical cycles, steering organic matter decomposition and carbon sequestration in terrestrial ecosystems through the stoichiometric properties of photosynthetic organs. Deciphering their multi-scale spatiotemporal dynamics is central to unraveling plant nutrient strategies and their coupling mechanisms with global element cycling. In the current study, we modeled biogeochemical parameters (C/N/P contents, stoichiometry, and pools) in plant aboveground parts by using the growing mean temperature, total precipitation, total radiation, and maximum normalized difference vegetation index (NDVImax) across nine models (i.e., random forest model, generalized boosting regression model, multiple linear regression model, artificial neural network model, generalized linear regression model, conditional inference tree model, extreme gradient boosting model, support vector machine model, and recursive regression tree) in Xizang grasslands. The results showed that the random forest model had the highest predictive accuracy for nitrogen content, C:P, and N:P ratios under both grazing and fencing conditions (training R2 >= 0.61, validation R2 >= 0.95). Additionally, the random forest model had the highest predictive accuracy for C:N ratios under fencing conditions (training R2 = 0.84, validation R2 = 1.00), as well as for C pool and P content and pool under grazing conditions (training R2 >= 0.62, validation R2 >= 0.90). Therefore, the random forest algorithm based on climate data and/or the NDVImax demonstrated superior predictive performance in modeling these biogeochemical parameters.
URL标识查看原文
WOS关键词NEURAL-NETWORKS ; TIBETAN ; STOICHIOMETRY ; PRODUCTIVITY ; AVAILABILITY ; SHIFTS
WOS研究方向Agriculture ; Plant Sciences
语种英语
WOS记录号WOS:001515229400001
出版者MDPI
源URL[http://ir.igsnrr.ac.cn/handle/311030/214621]  
专题拉萨站高原生态系统研究中心_外文论文
通讯作者Fu, Gang
作者单位1.Qinghai Univ, State Key Lab Plateau Ecol & Agr, Xining 810018, Peoples R China;
2.Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, Lhasa Plateau Ecosyst Res Stn, Key Lab Ecosyst Network Observat & Modeling, Beijing 100101, Peoples R China
推荐引用方式
GB/T 7714
Xiang, Mingxue,Fu, Gang,Cheng, Jianghao,et al. Simulating the Carbon, Nitrogen, and Phosphorus of Plant Above-Ground Parts in Alpine Grasslands of Xizang, China[J]. AGRONOMY-BASEL,2025,15(6):1413.
APA Xiang, Mingxue.,Fu, Gang.,Cheng, Jianghao.,Ma, Tao.,Ma, Yunqiao.,...&Wang, Zhaoqi.(2025).Simulating the Carbon, Nitrogen, and Phosphorus of Plant Above-Ground Parts in Alpine Grasslands of Xizang, China.AGRONOMY-BASEL,15(6),1413.
MLA Xiang, Mingxue,et al."Simulating the Carbon, Nitrogen, and Phosphorus of Plant Above-Ground Parts in Alpine Grasslands of Xizang, China".AGRONOMY-BASEL 15.6(2025):1413.

入库方式: OAI收割

来源:地理科学与资源研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。