A rapid interpretation RBF-NSGA-II framework for multi-mechanical parameters from impact penetration technique
文献类型:期刊论文
| 作者 | Li YQ(李玉琼)1,2,3 ; Ying LP(应黎坪)1,3; Lv ZY(吕志远)1,3; Li N(李娜)1,3; Yuan Z(袁征)1,3; Han ZF(韩宗芳)1,3
|
| 刊名 | COMPUTERS AND GEOTECHNICS
![]() |
| 出版日期 | 2025-09-01 |
| 卷号 | 185页码:15 |
| 关键词 | Soil Parameter interpretation RBF neural network NSGA-II optimization Impact penetration |
| ISSN号 | 0266-352X |
| DOI | 10.1016/j.compgeo.2025.107377 |
| 通讯作者 | Ying, Liping(yingliping@imech.ac.cn) |
| 英文摘要 | The ability to predict the soil mechanical parameters swiftly is critical for off-road vehicle mobility. This paper introduces a novel interpretation methodology for determining critical soil mechanical parameters by impact penetration tests, enabling rapid and remote assessment of terramechanics properties. Initially, the method employs the Mohr-Coulomb constitutive model and the Coupled Eulerian-Lagrangian (CEL) finite element method to generate a dataset of soil impact penetration resistance and acceleration responses. Subsequently, a Radial Basis Function (RBF) neural network is employed as a surrogate model and integrated with the Nondominated Sorting Genetic Algorithm II (NSGA-II) to accurately interpret parameters such as density, cohesion, internal friction angle, elastic modulus, and Poisson's ratio. Experimental validation using sand and silty clay from Yangbaijing, Tibet, confirmed the accuracy and robustness of the method. The results indicate that the mean absolute percentage error for interpreted values was below 25%, with relative errors for some key parameters even below 10%. Furthermore, each single-condition calculation was completed on a standard computer in less than one minute. Comparative analyses with other algorithms, including MIGA and POS, demonstrated the superior performance of NSGA-II in avoiding local optima. The proposed interpretation framework offers a rapid, reliable, and remote solution for identifying the soil mechanical properties. Its potential applications range from disaster mitigation and emergency response operations to extraterrestrial soil exploration and other scenarios where in-situ investigations are challenging. |
| 分类号 | 一类 |
| WOS关键词 | MULTIOBJECTIVE OPTIMIZATION ; DIFFERENTIAL EVOLUTION ; CONCRETE TARGET ; STRAIN-RATE ; STRENGTH ; ALGORITHM ; VELOCITY ; DESIGN ; SOILS ; CPT |
| 资助项目 | Youth Innovation Promotion Association of the Chinese Academy of Sciences[Y2022009] ; High-level Innovation Research Institute Program of Guangdong Province[2020B0909010003] ; Strategic Priority Research Program of Chinese Academy of Sciences[XDB0620103] ; National Natural Science Foundation of China[52301405] ; National Natural Science Foundation of China[12302109] |
| WOS研究方向 | Computer Science ; Engineering ; Geology |
| 语种 | 英语 |
| WOS记录号 | WOS:001500751300001 |
| 资助机构 | Youth Innovation Promotion Association of the Chinese Academy of Sciences ; High-level Innovation Research Institute Program of Guangdong Province ; Strategic Priority Research Program of Chinese Academy of Sciences ; National Natural Science Foundation of China |
| 其他责任者 | 应黎坪 |
| 源URL | [http://dspace.imech.ac.cn/handle/311007/101724] ![]() |
| 专题 | 力学研究所_流固耦合系统力学重点实验室(2012-) |
| 作者单位 | 1.Guangdong Aerosp Res Acad, Guangzhou 511458, Nan Sha, Peoples R China 2.Chinese Acad Sci, Inst Mech, Key Lab Nonlinear Mech, Beijing 100190, Peoples R China; 3.Chinese Acad Sci, Key Lab Mech Fluid Solid Coupling Syst, Inst Mech, Beijing 100190, Peoples R China; |
| 推荐引用方式 GB/T 7714 | Li YQ,Ying LP,Lv ZY,et al. A rapid interpretation RBF-NSGA-II framework for multi-mechanical parameters from impact penetration technique[J]. COMPUTERS AND GEOTECHNICS,2025,185:15. |
| APA | 李玉琼,应黎坪,吕志远,李娜,袁征,&韩宗芳.(2025).A rapid interpretation RBF-NSGA-II framework for multi-mechanical parameters from impact penetration technique.COMPUTERS AND GEOTECHNICS,185,15. |
| MLA | 李玉琼,et al."A rapid interpretation RBF-NSGA-II framework for multi-mechanical parameters from impact penetration technique".COMPUTERS AND GEOTECHNICS 185(2025):15. |
入库方式: OAI收割
来源:力学研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


