中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Phase transition and agglomeration characteristics of fine particles in humid flue gas flowing through perpendicular pipe arrangement

文献类型:期刊论文

作者Shi, Weixiu2,3; Chang, Haiyu2; Liu, Xuebing2; Pan LS(潘利生)1
刊名APPLIED THERMAL ENGINEERING
出版日期2025-11-01
卷号278页码:16
关键词Flue gas Fine particle agglomeration Heat recovery
ISSN号1359-4311
DOI10.1016/j.applthermaleng.2025.127332
通讯作者Pan, Lisheng(panlisheng@imech.ac.cn)
英文摘要The excessive emission of particulate matter and the waste of residual heat are major issues in the flue gas emission process. By arranging perpendicular pipe turbulence heat exchange devices in the flue gas, it is possible to achieve flue gas heat recovery and fine particles agglomeration during water vapor phase change process. A numerical calculation model of the particle agglomeration process was established, involving turbulent agglomeration, Brownian agglomeration and vapor phase-change agglomeration. The influence of flue gas particle concentration, flue gas temperature, flue gas flow rate, flue gas humidity, heat exchange device wall temperature and structure on the agglomeration of particles was studied. The results indicate that an increase in particle concentration can enhance agglomeration efficiency, while excessively large or small particle sizes can reduce this efficiency. A decrease in flow velocity provides particles with more residence time within the heat exchanger, thereby improving agglomeration efficiency. A drop in flue gas temperature weakens convective heat transfer and vapor-phase condensation, leading to decreased agglomeration efficiency. Condensation of water vapor on particle surfaces promotes particle agglomeration efficiency. Lower wall temperatures and higher water vapor volume fractions increase the amount of vapor condensation, leading to more particles agglomeration under the influence of condensation. The use of staggered arrangements in the structure also helps improve particle agglomeration efficiency.
分类号一类
WOS关键词WATER-VAPOR ; GROWTH ; SIO2
资助项目National Natural Science Foundation of China[52000008] ; [KM202310016008]
WOS研究方向Thermodynamics ; Energy & Fuels ; Engineering ; Mechanics
语种英语
WOS记录号WOS:001523724000010
资助机构National Natural Science Foundation of China
其他责任者潘利生
源URL[http://dspace.imech.ac.cn/handle/311007/102253]  
专题力学研究所_高温气体动力学国家重点实验室
作者单位1.Chinese Acad Sci, State Key Lab High Temp Gas Dynam, Inst Mech, Beijing 100190, Peoples R China
2.Beijing Univ Civil Engn & Architecture, Sch Environm & Energy Engn, Beijing 100044, Peoples R China;
3.Beijing Univ Civil Engn & Architecture, Beijing Engn Res Ctr Sustainable Energy & Bldg, Beijing 100044, Peoples R China;
推荐引用方式
GB/T 7714
Shi, Weixiu,Chang, Haiyu,Liu, Xuebing,et al. Phase transition and agglomeration characteristics of fine particles in humid flue gas flowing through perpendicular pipe arrangement[J]. APPLIED THERMAL ENGINEERING,2025,278:16.
APA Shi, Weixiu,Chang, Haiyu,Liu, Xuebing,&潘利生.(2025).Phase transition and agglomeration characteristics of fine particles in humid flue gas flowing through perpendicular pipe arrangement.APPLIED THERMAL ENGINEERING,278,16.
MLA Shi, Weixiu,et al."Phase transition and agglomeration characteristics of fine particles in humid flue gas flowing through perpendicular pipe arrangement".APPLIED THERMAL ENGINEERING 278(2025):16.

入库方式: OAI收割

来源:力学研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。