Artificial kink defects enable high-efficiency degradation of nanocellulose via mechanochemical activation
文献类型:期刊论文
| 作者 | Hou, YuanZhen2,4; Han, ZiMeng3; Zhu, YinBo2; Xia, Jun1,2,3,4,5; Li, JiaHao2; Yang, KunPeng3; He, ZeZhou2; Song, RongZhuang2; Guan, QingFang3; Lu, Yang4 |
| 刊名 | MATTER
![]() |
| 出版日期 | 2025-09-03 |
| 卷号 | 8期号:9页码:13 |
| ISSN号 | 2590-2393 |
| DOI | 10.1016/j.matt.2025.102212 |
| 通讯作者 | Zhu, YinBo(zhuyinbo@ustc.edu.cn) ; Yu, Shu-Hong(shyu@ustc.edu.cn) ; Wu, HengAn(wuha@ustc.edu.cn) |
| 英文摘要 | High-efficiency degradation and conversion of cellulosic biomass into biofuels and bio-based chemicals are critical to human society for sustainable development. Long-term challenges in deciphering how mechanical external force activates nanocellulose hydrolysis at the molecular level have hindered the wider application of mechanochemistry in high-efficiency degradation technologies. Here, combining multiscale modeling and in situ experimental characterization, we revealed the mechanochemistry hidden in the mechanically activated nanocellulose degradation behaviors, that artificial kink defects enable hydrolysis acceleration. The localized plastic deformation and nonlinear molecular geometry at kink defects drive hydrolysis processes toward the lower-barrier reaction pathway and facilitate hydrolysis accessibility. The proposed two-step mechanochemical hydrolysis strategy, introducing more artificial kink defects and preferential reaction sites via mechanical pretreatment, realizes substantial enhancement of hydrolysis efficiency. This study provides a framework for anticipating how mechanical external force, microstructure defects, and molecular geometric mutation contribute to the mechanochemical degradation of cellulosic biomass with more sustainability and bioeconomy. |
| 分类号 | 一类 |
| WOS关键词 | CELLULOSE ; HYDROLYSIS ; CHEMISTRY ; BIOMASS ; WOOD |
| 资助项目 | National Natural Science Foundation of China[12388101] ; National Natural Science Foundation of China[12232016] ; National Natural Science Foundation of China[12172346] ; National Natural Science Foundation of China[12202431] ; National Natural Science Foundation of China[22293044] ; National Natural Science Foundation of China[U1932213] ; National Natural Science Foundation of China[51732011] ; National Natural Science Foundation of China[22105194] ; National Natural Science Foundation of China[92163130] ; National Natural Science Foundation of China[223B2506] ; Youth Inno-vation Promotion Association CAS[2022465] ; Postdoctoral Fellowship Program of CPSF[GZB20240712] ; China Postdoctoral Science Foundation-Anhui Joint Support Program[2024T010AH] ; China Postdoctoral Science Foundation[2024M763149] ; China Postdoctoral Science Foundation[2023M731372] ; Fundamental Research Funds for the Central Universities[WK2090000087] ; Strategic Priority Research Program of the Chinese Academy of Sciences[XDB0450402] ; Anhui Province Outstanding Youth Science Fund[2408085J011] ; Natural Science Foundation of Anhui Province[2208085QA24] ; Innovation and Technology Fund of the Hong Kong Special Administrative Region, China[PRP/054/22FX] ; University of Science and Technology of China ; Hefei Advanced Computing Center |
| WOS研究方向 | Materials Science |
| 语种 | 英语 |
| WOS记录号 | WOS:001568696900004 |
| 资助机构 | National Natural Science Foundation of China ; Youth Inno-vation Promotion Association CAS ; Postdoctoral Fellowship Program of CPSF ; China Postdoctoral Science Foundation-Anhui Joint Support Program ; China Postdoctoral Science Foundation ; Fundamental Research Funds for the Central Universities ; Strategic Priority Research Program of the Chinese Academy of Sciences ; Anhui Province Outstanding Youth Science Fund ; Natural Science Foundation of Anhui Province ; Innovation and Technology Fund of the Hong Kong Special Administrative Region, China ; University of Science and Technology of China ; Hefei Advanced Computing Center |
| 其他责任者 | Zhu, YinBo ; Yu, Shu-Hong ; 吴恒安 |
| 源URL | [http://dspace.imech.ac.cn/handle/311007/103584] ![]() |
| 专题 | 力学研究所_非线性力学国家重点实验室 |
| 作者单位 | 1.Jiangsu Univ, Fac Civil Engn & Mech, Zhenjiang 212013, Peoples R China; 2.Univ Sci & Technol China, Dept Modern Mech, CAS Key Lab Mech Behav & Design Mat, Hefei 230027, Peoples R China; 3.Univ Sci & Technol China, Inst Biomimet Mat & Chem,New Cornerstone Sci Lab, Hefei Natl Res Ctr Phys Sci Microscale,Dept Chem, Anhui Engn Lab Biomimet Mat,Div Nanomat & Chem, Hefei 230026, Peoples R China; 4.Univ Hong Kong, Dept Mech Engn, Hong Kong 999077, Peoples R China; 5.Chinese Acad Sci, Inst Mech, State Key Lab Nonlinear Mech, Beijing 100190, Peoples R China; 6.Southern Univ Sci & Technol, Inst Innovat Mat I2M, Dept Chem, Dept Mat Sci & Engn, Shenzhen 518055, Peoples R China |
| 推荐引用方式 GB/T 7714 | Hou, YuanZhen,Han, ZiMeng,Zhu, YinBo,et al. Artificial kink defects enable high-efficiency degradation of nanocellulose via mechanochemical activation[J]. MATTER,2025,8(9):13. |
| APA | Hou, YuanZhen.,Han, ZiMeng.,Zhu, YinBo.,Xia, Jun.,Li, JiaHao.,...&吴恒安.(2025).Artificial kink defects enable high-efficiency degradation of nanocellulose via mechanochemical activation.MATTER,8(9),13. |
| MLA | Hou, YuanZhen,et al."Artificial kink defects enable high-efficiency degradation of nanocellulose via mechanochemical activation".MATTER 8.9(2025):13. |
入库方式: OAI收割
来源:力学研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。

