Discovering high-strength alloys via physics-transfer learning
文献类型:期刊论文
| 作者 | Zhao, Yingjie2; Zhou HB(周红波)3; Zhang, Zian2; Bo, Zhenxing4; Sun, Baoan4; Jiang MQ(蒋敏强)1,3; Xu, Zhiping2 |
| 刊名 | MATTER
![]() |
| 出版日期 | 2025-09-03 |
| 卷号 | 8期号:9页码:15 |
| ISSN号 | 2590-2393 |
| DOI | 10.1016/j.matt.2025.102377 |
| 通讯作者 | Jiang, Minqiang(mqjiang@imech.ac.cn) ; Xu, Zhiping(xuzp@tsinghua.edu.cn) |
| 英文摘要 | Predicting the strength of materials requires knowledge over multiple scales, striking a balance between accuracy and efficiency. Peierls stress measures material strength by evaluating dislocation resistance to plastic flow, reliant on elastic lattice responses and the crystal slip energy landscape. Computational challenges due to the non-local and non-equilibrium nature of dislocations prohibit Peierls stress evaluation from stateof-the-art material databases. We propose a physics-transfer learning framework that leverages neural networks trained on force-field simulations to understand crystal plasticity physics, predicting Peierls stress from material parameters derived via first-principles calculations, which are otherwise computationally intractable for direct dislocation modeling. This physics-transfer approach successfully screens strengths of metallic alloys from a limited number of single-point calculations with chemical accuracy. Guided by the prediction, we fabricate high-strength binary alloys previously unexplored via high-throughput ion-beam deposition. The framework solves problems facing the accuracy-performance dilemma by harnessing multi-scale physics in materials sciences. |
| 分类号 | 一类 |
| WOS关键词 | MECHANICAL-PROPERTIES ; DISLOCATIONS ; PLASTICITY ; STRESS |
| 资助项目 | National Natural Science Foundation of China[12425201] ; National Natural Science Foundation of China[52090032] ; National Natural Science Foundation of China[12125206] ; National Natural Science Foundation of China[W2411003] ; Beijing Municipal Science and Technology Commission[Z23110000 7123015] |
| WOS研究方向 | Materials Science |
| 语种 | 英语 |
| WOS记录号 | WOS:001566113700001 |
| 资助机构 | National Natural Science Foundation of China ; Beijing Municipal Science and Technology Commission |
| 其他责任者 | 蒋敏强 ; Xu, Zhiping |
| 源URL | [http://dspace.imech.ac.cn/handle/311007/103593] ![]() |
| 专题 | 力学研究所_非线性力学国家重点实验室 |
| 作者单位 | 1.Univ Chinese Acad Sci, Sch Engn Sci, Beijing 101408, Peoples R China 2.Tsinghua Univ, Dept Engn Mech, Appl Mech Lab, Beijing 100084, Peoples R China; 3.Chinese Acad Sci, Inst Mech, State Key Lab Nonlinear Mech, Beijing 100190, Peoples R China; 4.Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China; |
| 推荐引用方式 GB/T 7714 | Zhao, Yingjie,Zhou HB,Zhang, Zian,et al. Discovering high-strength alloys via physics-transfer learning[J]. MATTER,2025,8(9):15. |
| APA | Zhao, Yingjie.,周红波.,Zhang, Zian.,Bo, Zhenxing.,Sun, Baoan.,...&Xu, Zhiping.(2025).Discovering high-strength alloys via physics-transfer learning.MATTER,8(9),15. |
| MLA | Zhao, Yingjie,et al."Discovering high-strength alloys via physics-transfer learning".MATTER 8.9(2025):15. |
入库方式: OAI收割
来源:力学研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。

